Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Curr Res Neurobiol ; 5: 100105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576491

RESUMEN

Mutations in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathogenetic mechanisms linked to this gene are a direct consequence of an aberrant intronic expansion of a GGGGCC hexanucleotide located between the 1a and 1b non-coding exons, which can be transcribed to form cytotoxic RNA foci or even translated into aggregation-prone dipeptide repeat proteins. Importantly, the abnormal length of these repeats affects also the expression levels of C9orf72 itself, which suggests haploinsufficiency as additional pathomechanism. Thus, it appears that both toxic gain of function and loss of function are distinct but still coexistent features contributing to the insurgence of the disease in case of C9orf72 mutations. In this study, we aimed at identifying a strategy to address both aspects of the C9orf72-related pathobiochemistry and provide proof-of-principle information for a better understanding of the mechanisms leading to neuronal loss. By using primary neurons overexpressing toxic poly(GA), the most abundant protein product of the GGGGCC repeats, we found that the antiarrhythmic drug propranolol could efficiently reduce the accumulation of aberrant aggregates and increase the survival of C9orf72-related cultures. Interestingly, the improved catabolism appeared to not depend on major degradative pathways such as autophagy and the proteasome. By analyzing the proteome of poly(GA)-expressing neurons after exposure to propranolol, we found that the drug increased lysosomal degradation through a mechanism directly involving C9orf72 protein, whose levels were increased after treatment. Further confirmation of the beneficial effect of the beta blocker on aggregates' accumulation and survival of hiPSC-derived C9orf72-mutant motoneurons strengthened the finding that addressing both facets of C9orf72 pathology might represent a valid strategy for the treatment of these ALS/FTD cases.

3.
Acta Neuropathol ; 146(3): 451-475, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37488208

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease mainly affecting upper and lower motoneurons. Several functionally heterogeneous genes have been associated with the familial form of this disorder (fALS), depicting an extremely complex pathogenic landscape. This heterogeneity has limited the identification of an effective therapy, and this bleak prognosis will only improve with a greater understanding of convergent disease mechanisms. Recent evidence from human post-mortem material and diverse model systems has highlighted the synapse as a crucial structure actively involved in disease progression, suggesting that synaptic aberrations might represent a shared pathological feature across the ALS spectrum. To test this hypothesis, we performed the first comprehensive analysis of the synaptic proteome from post-mortem spinal cord and human iPSC-derived motoneurons carrying mutations in the major ALS genes. This integrated approach highlighted perturbations in the molecular machinery controlling vesicle release as a shared pathomechanism in ALS. Mechanistically, phosphoproteomic analysis linked the presynaptic vesicular phenotype to an accumulation of cytotoxic protein aggregates and to the pro-apoptotic activation of the transcription factor c-Jun, providing detailed insights into the shared pathobiochemistry in ALS. Notably, sub-chronic treatment of our iPSC-derived motoneurons with the fatty acid docosahexaenoic acid exerted a neuroprotective effect by efficiently rescuing the alterations revealed by our multidisciplinary approach. Together, this study provides strong evidence for the central and convergent role played by the synaptic microenvironment within the ALS spinal cord and highlights a potential therapeutic target that counteracts degeneration in a heterogeneous cohort of human motoneuron cultures.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/patología , Enfermedades Neurodegenerativas/patología , Proteómica , Superóxido Dismutasa-1/genética , Neuronas Motoras/metabolismo
4.
Front Mol Neurosci ; 15: 894230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774867

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is an incurable neurodegenerative disease characterized by dysfunction and loss of upper and lower motor neurons (MN). Despite several studies identifying drastic alterations affecting synaptic composition and functionality in different experimental models, the specific contribution of impaired activity to the neurodegenerative processes observed in ALS-related MN remains controversial. In particular, contrasting lines of evidence have shown both hyper- as well as hypoexcitability as driving pathomechanisms characterizing this specific neuronal population. In this study, we combined high definition multielectrode array (HD-MEA) techniques with transcriptomic analysis to longitudinally monitor and untangle the activity-dependent alterations arising in human C9orf72-mutant MN. We found a time-dependent reduction of neuronal activity in ALSC9orf72 cultures occurring as synaptic contacts undergo maturation and matched by a significant loss of mutant MN upon aging. Notably, ALS-related neurons displayed reduced network synchronicity most pronounced at later stages of culture, suggesting synaptic imbalance. In concordance with the HD-MEA data, transcriptomic analysis revealed an early up-regulation of synaptic terms in ALSC9orf72 MN, whose expression was decreased in aged cultures. In addition, treatment of older mutant cells with Apamin, a K+ channel blocker previously shown to be neuroprotective in ALS, rescued the time-dependent loss of firing properties observed in ALSC9orf72 MN as well as the expression of maturity-related synaptic genes. All in all, this study broadens the understanding of how impaired synaptic activity contributes to MN degeneration in ALS by correlating electrophysiological alterations to aging-dependent transcriptional programs.

5.
Anat Sci Educ ; : 89-101, 2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33128816

RESUMEN

Scientific competences as defined in the German competency framework describes the ability to think independently and act scientifically, and forms a central component of medical education. This report describes its integration into anatomical teaching. On the basis of the findings in dissection courses from two consecutive years, students worked on either a case report (n = 70) or an original work (n=6) in the format of a scientific poster while learning to use primary literature. Posters were evaluated by juror teams using standardized evaluation criteria. Student perception of the project was estimated by quantitative and qualitative data obtained from the faculty´s course evaluation and an online-survey. Overall, students worked collaboratively and invested extra-time (median [MD] 3.0 hours) in poster creation. Primary literature was integrated in 90.8% of the posters. Overall poster quality was satisfactory (46.3 ±8.5 [mean ±standard deviation] out of 72 points), but several insufficiencies were identified. Students integrated information gained from the donor´s death certificate, post-mortem full-body computer tomography (CT) scan (22.4%) and histopathological workup (31.6%) in their case reports. Students were positive about the experience of learning new scientific skills (MD 4 on a six-point Likert scale), but free text answers revealed that some students experienced the project as an extra burden in a demanding course. In summary, it was feasible to introduce students to science during the dissection course and to increase interest in science in approximately a third of the survey respondents. Further adjustments to ensure the posters´ scientific quality might be necessary in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...