Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stud Mycol ; 98: 100116, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34466168

RESUMEN

Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).

2.
Fungal Syst Evol ; 7: 177-196, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34124623

RESUMEN

The taxonomy of the genus Hormomyces, typified by Hormomyces aurantiacus, which based on circumstantial evidence was long assumed to be the hyphomycetous asexual morph of Tremella mesenterica (Tremellales, Tremellomycetes) or occasionally Dacrymyces (Dacrymycetales, Dacrymycetes), is revised. Phylogenies based on the three nuc rDNA markers [internal transcribed spacers (ITS), 28S large ribosomal subunit nrDNA (28S) and 18S small ribosomal subunit nrDNA (18S)], based on cultures from Canada and the United States, suggest that the genus is synonymous with Tulasnella (Cantharellales, Agaricomycetes) rather than Tremella or Dacrymyces. Morphological studies of 38 fungarium specimens of Hormomyces, including the type specimens of H. callorioides, H. fragiformis, H. paridiphilus and H. peniophorae and examination of the protologues of H. abieticola, H. aurantiacus and H. pezizoideus suggest that H. callorioides and H. fragiformis are conspecific with H. aurantiacus while the remaining species are unlikely to be related to Tulasnella. The conidial chains produced by H. aurantiacus are similar to monilioid cells of asexual morphs of Tulasnella species formerly referred to the genus Epulorhiza. The new combination Tulasnella aurantiaca is proposed and the species is redescribed, illustrated and compared with similar fungi. The ecological niche of T. aurantiaca and its possible relationship to orchid root endophytes is discussed. A key to asexual genera with similar conidium ontogeny to T. aurantiaca is provided. Citation: Mack J, Assabgui RA, Seifert KA (2021). Taxonomy and phylogeny of the basidiomycetous hyphomycete genus Hormomyces. Fungal Systematics and Evolution 7: 177-196. doi: 10.3114/fuse.2021.07.09.

3.
Stud Mycol ; 95: 293-380, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32855742

RESUMEN

Mollisia is a taxonomically neglected discomycete genus (Helotiales, Leotiomycetes) of commonly encountered saprotrophs on decaying plant tissues throughout temperate regions. The combination of indistinct morphological characters, more than 700 names in the literature, and lack of reference DNA sequences presents a major challenge when working with Mollisia. Unidentified endophytes, including strains that produced antifungal or antiinsectan secondary metabolites, were isolated from conifer needles in New Brunswick and placed with uncertainty in Phialocephala and Mollisia, necessitating a more comprehensive treatment of these genera. In this study, morphology and multigene phylogenetic analyses were used to explore the taxonomy of Mollisiaceae, including Mollisia, Phialocephala, and related genera, using new field collections, herbarium specimens, and accessioned cultures and sequences. The phylogeny of Mollisiaceae was reconstructed and compared using the nuc internal transcribed spacer rDNA (ITS) barcode and partial sequences of the 28S nuc rDNA (LSU) gene, largest subunit of RNA polymerase II (RPB1), DNA topoisomerase I (TOP1), and the hypothetical protein Lipin/Ned1/Smp2 (LNS2). The results show that endophytism is common throughout the Mollisiaceae lineage in a diverse range of hosts but is infrequently attributed to Mollisia because of a paucity of reference sequences. Generic boundaries within Mollisiaceae are poorly resolved and based on phylogenetic evidence the family included species placed in Acephala, Acidomelania, Barrenia, Bispora, Cheirospora, Cystodendron, Fuscosclera, Hysteronaevia, Loramyces, Mollisia, Neopyrenopeziza, Obtectodiscus, Ombrophila, Patellariopsis, Phialocephala, Pulvinata, Tapesia (=Mollisia), and Trimmatostroma. Taxonomic novelties included the description of five novel Mollisia species and five novel Phialocephala species and the synonymy of Fuscosclera with Phialocephala, Acidomelania with Mollisia, and Loramycetaceae with Mollisiaceae.

4.
Fungal Syst Evol ; 5: 1-15, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32467912

RESUMEN

Penicillium species were commonly isolated during a fungal survey of bat hibernacula in New Brunswick and Quebec, Canada. Strains were isolated from arthropods, bats, rodents (i.e. the deer mouse Peromyscus maniculatus), their dung, and cave walls. Hundreds of fungal strains were recovered, of which Penicillium represented a major component of the community. Penicillium strains were grouped by colony characters on Blakeslee's malt extract agar. DNA sequencing of the secondary identification marker, beta-tubulin, was done for representative strains from each group. In some cases, ITS and calmodulin were sequenced to confirm identifications. In total, 13 species were identified, while eight strains consistently resolved into a unique clade with P. discolor, P. echinulatum and P. solitum as its closest relatives. Penicillium speluncae is described using macroand micromorphological characters, multigene phylogenies (including ITS, beta-tubulin, calmodulin and RNA polymerase II second largest subunit) and extrolite profiles. Major extrolites produced by the new species include cyclopenins, viridicatins, chaetoglobosins, and a microheterogenous series of cyclic and linear tetrapeptides.

5.
Stud Mycol ; 93: 65-153, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30210181

RESUMEN

The traditional concept of the genus Humicola includes species that produce pigmented, thick-walled and single-celled spores laterally or terminally on hyphae or minimally differentiated conidiophores. More than 50 species have been described in the genus. Species commonly occur in soil, indoor environments, and compost habitats. The taxonomy of Humicola and morphologically similar genera is poorly understood in modern terms. Based on a four-locus phylogeny, the morphological concept of Humicola proved to be polyphyletic. The type of Humicola, H. fuscoatra, belongs to the Chaetomiaceae. In the Chaetomiaceae, species producing humicola-like thick-walled spores are distributed among four lineages: Humicola sensu stricto, Mycothermus, Staphylotrichum, and Trichocladium. In our revised concept of Humicola, asexual and sexually reproducing species both occur. The re-defined Humicola contains 24 species (seven new and thirteen new combinations), which are described and illustrated in this study. The species in this genus produce conidia that are lateral, intercalary or terminal on/in hyphae, and conidiophores are not formed or are minimally developed (micronematous). The ascospores of sexual Humicola species are limoniform to quadrangular in face view and bilaterally flattened with one apical germ pore. Seven species are accepted in Staphylotrichum (four new species, one new combination). Thick-walled conidia of Staphylotrichum species usually arise either from hyphae (micronematous) or from apically branched, seta-like conidiophores (macronematous). The sexual morph represented by Staphylotrichum longicolleum (= Chaetomium longicolleum) produces ascomata with long necks composed of a fused basal part of the terminal hairs, and ascospores that are broad limoniform to nearly globose, bilaterally flattened, with an apical germ pore. The Trichocladium lineage has a high morphological diversity in both asexual and sexual structures. Phylogenetic analysis revealed four subclades in this lineage. However, these subclades are genetically closely related, and no distinctive phenotypic characters are linked to any of them. Fourteen species are accepted in Trichocladium, including one new species, twelve new combinations. The type species of Gilmaniella, G. humicola, belongs to the polyphyletic family Lasiosphaeriaceae (Sordariales), but G. macrospora phylogenetically belongs to Trichocladium. The thermophilic genus Mycothermus and the type species My. thermophilum are validated, and one new Mycothermus species is described. Phylogenetic analyses show that Remersonia, another thermophilic genus, is sister to Mycothermus and two species are known, including one new species. Thermomyces verrucosus produces humicola-like conidia and is transferred to Botryotrichum based on phylogenetic affinities. This study is a first attempt to establish an inclusive modern classification of Humicola and humicola-like genera of the Chaetomiaceae. More research is needed to determine the phylogenetic relationships of "humicola"-like species outside the Chaetomiaceae.

6.
Fungal Syst Evol ; 4: 13-20, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32467903

RESUMEN

Tryblidiopsis pinastri (Leotiomycetes, Rhytismatales) was described from Picea abies in Europe and was also thought to occur on North American Picea. However, previously published sequences of Picea foliar endophytes from Eastern Canada suggested the presence of at least two cryptic Tryblidiopsis species, distinct from T. pinastri and other known species. Our subsequent sampling of Tryblidiopsis ascomata from dead attached Picea glauca branches resulted in the collection of a putatively undescribed species previously isolated as a P. glauca endophyte. Morphological evidence combined with phylogenetic analyses based on nuclear ribosomal internal transcribed spacer (ITS) and large subunit ribosomal (LSU) DNA sequences support the distinctiveness of this species, described here as T. magnesii.

7.
Stud Mycol ; 88: 137-159, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29158610

RESUMEN

A recent taxonomic revision of Microascaceae with an emphasis on synnematous fungi enabled re-identification of previously isolated indoor strains of Cephalotrichum. All available Cephalotrichum strains from the culture collection of the Westerdijk Institute were studied, 20 originating from the built environment. Phylogenetic relationships were inferred from DNA sequence data from the internal transcribed spacer 1 and 2 and intervening 5.8S nrDNA (ITS), and parts of ß-tubulin (tub2) and translation elongation factor 1-α (tef1) genes. Additionally, herbarium material of 14 Cephalotrichum species described from soil in China was studied, and the taxonomy of C. album, not considered in recent revisions, was reevaluated. Sixteen phylogenetic species in Cephalotrichum are distinguished, five described as new species: C. domesticum, C. lignatile, C. telluricum, C. tenuissimum and C. transvaalense. Five Cephalotrichum species occur in the built environment: C. domesticum, C. gorgonifer (formerly known as Trichurus spiralis), C. microsporum, C. purpureofuscum, and C. verrucisporum. Based on the number of isolates, C. gorgonifer (nine strains) is the most common indoor species. The study of the Chinese herbarium material resulted in the acceptance of three additional Cephalotrichum species: C. casteneum, C. ellipsoideum, and C. spirale. Four species are considered nomena dubia (C. cylindrosporum, C. macrosporum, C. ovoideum, and C. robustum), five are placed in synonymy with other Cephalotrichum species (C. acutisporum, C. inflatum, C. longicollum, C. oblongum, C. terricola) and one species, C. verrucipes, is probably a synonym of Penicillium clavigerum. Cephalotrichum columnare, former Doratomyces columnaris, is transferred to Kernia. Cephalotrichum album, formerly known as Doratomyces putredinis, is transferred to Acaulium and redescribed.

8.
Stud Mycol ; 88: 161-236, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29158611

RESUMEN

Aspergillus section Restricti together with sister section Aspergillus (formerly Eurotium) comprises xerophilic species, that are able to grow on substrates with low water activity and in extreme environments. We adressed the monophyly of both sections within subgenus Aspergillus and applied a multidisciplinary approach for definition of species boundaries in sect. Restricti. The monophyly of sections Aspergillus and Restricti was tested on a set of 102 isolates comprising all currently accepted species and was strongly supported by Maximum likelihood (ML) and Bayesian inferrence (BI) analysis based on ß-tubulin (benA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) loci. More than 300 strains belonging to sect. Restricti from various isolation sources and four continents were characterized by DNA sequencing, and 193 isolates were selected for phylogenetic analyses and phenotypic studies. Species delimitation methods based on multispecies coalescent model were employed on DNA sequences from four loci, i.e., ID region of rDNA (ITS + 28S), CaM, benA and RPB2, and supported recognition of 21 species, including 14 new. All these species were also strongly supported in ML and BI analyses. All recognised species can be reliably identified by all four examined genetic loci. Phenotype analysis was performed to support the delimitation of new species and includes colony characteristics on seven cultivation media incubated at several temperatures, growth on an osmotic gradient (six media with NaCl concentration from 0 to 25 %) and analysis of morphology including scanning electron microscopy. The micromorphology of conidial heads, vesicle dimensions, temperature profiles and growth parameters in osmotic gradient were useful criteria for species identification. The vast majority of species in sect. Restricti produce asperglaucide, asperphenamate or both in contrast to species in sect. Aspergillus. Mycophenolic acid was detected for the first time in at least six members of the section. The ascomata of A. halophilicus do not contain auroglaucin, epiheveadride or flavoglaucin which are common in sect. Aspergillus, but shares the echinulins with sect. Aspergillus.

9.
Stud Mycol ; 88: 237-267, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29317789

RESUMEN

Xerophilic fungi, especially Aspergillus species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454-pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (aw) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in Aspergillus subgenus Polypaecilum were isolated, mostly from lowered aw media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, ß-tubulin (BenA), calmodulin (CaM), RNA polymerase II second largest subunit (RPB2), DNA topoisomerase 1 (TOP1), and a pre-mRNA processing protein homolog (TSR1) confirmed the isolation of seven species of subgenus Polypaecilum, including five novel species: A. baarnensis, A. keratitidis, A. kalimae sp. nov., A. noonimiae sp. nov., A. thailandensis sp. nov., A. waynelawii sp. nov., and A. whitfieldii sp. nov. Pyrosequencing detected six of the seven species isolated from house dust, as well as one additional species absent from the cultures isolated, and three clades representing potentially undescribed species. Species were typically found in house dust from subtropical and tropical climates, often in close proximity to the ocean or sea. The presence of subgenus Polypaecilum, a recently described clade of xerophilic/xerotolerant, halotolerant/halophilic, and potentially zoopathogenic species, within the built environment is noteworthy.

10.
Persoonia ; 36: 134-55, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27616790

RESUMEN

The genus Torulomyces was characterised by species that typically have conidiophores consisting of solitary phialides that produce long chains of conidia connected by disjunctors. Based on the phylogenetic position of P. lagena (generic ex-neotype), the genus and its seven species were transferred to Penicillium and classified in sect. Torulomyces along with P. cryptum and P. lassenii. The aim of this study was to review the species currently classified in sect. Torulomyces using morphology and phylogenies of the ITS, BenA, CaM and RPB2 regions. Based on our results, we accept 16 species in sect. Torulomyces, including 12 new species described as P. aeris, P. austricola, P. cantabricum, P. catalonicum, P. oregonense, P. marthae-christenseniae, P. riverlandense, P. tubakianum, P. variratense, P. williamettense, P. wisconsinense and P. wollemiicola. In addition, we reclassify P. laeve and P. ovatum in sect. Exilicaulis and correct the typification of P. lagena. We provide descriptions and notes on the identification of the species.

11.
Persoonia ; 36: 247-80, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27616792

RESUMEN

We introduce 15 new species of Penicillium isolated from a diverse range of locations, including Canada, Costa Rica, Germany, Italy, New Zealand, Tanzania, USA and the Dry Valleys of Antarctica, from a variety of habitats, including leaf surfaces in tropical rain forests, soil eaten by chimpanzees, infrabuccal pockets of carpenter ants, intestinal contents of caterpillars and soil. The new species are classified in sections Aspergilloides (1), Canescentia (2), Charlesia (1), Exilicaulis (3), Lanata-Divaricata (7) and Stolkia (1). Each is characterised and described using classical morphology, LC-MS based extrolite analyses and multigene phylogenies based on ITS, BenA and CaM. Significant extrolites detected include andrastin, pulvilloric acid, penitrem A and citrinin amongst many others.

12.
Persoonia ; 37: 57-81, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28232761

RESUMEN

Phylogenetic analyses of DNA sequences from nuclear ribosomal and protein-coding loci support the placement of several perithecial ascomycetes and dematiaceous hyphomycetes from freshwater and terrestrial environments in two monophyletic clades closely related to the Savoryellales. One clade formed by five species of Conioscypha and a second clade containing several genera of uncertain taxonomic status centred on Pleurothecium, represent two distinct taxonomic groups at the ordinal systematic rank. They are proposed as new orders, the Conioscyphales and Pleurotheciales. Several taxonomic novelties are introduced in the Pleurotheciales, i.e. two new genera (Adelosphaeria and Melanotrigonum), three novel species (A. catenata, M. ovale, Phaeoisaria fasciculata) and a new combination (Pleurotheciella uniseptata). A new combination is proposed for Savoryella limnetica in Ascotaiwania s.str. based on molecular data and culture characters. A strongly supported lineage containing a new genus Plagiascoma, species of Bactrodesmiastrum and Ascotaiwania persoonii, was identified as a sister to the Conioscyphales/Pleurotheciales/Savoryellales clade in our multilocus phylogeny. Together, they are nested in a monophyly in the Hypocreomycetidae, significantly supported by Bayesian inference and Maximum Likelihood analyses. Members of this clade share a few morphological characters, such as the absence of stromatic tissue or clypeus, similar anatomies of the 2-layered ascomatal walls, thin-walled unitunicate asci with a distinct, non-amyloid apical annulus, symmetrical, transversely septate ascospores and holoblastic conidiogenesis. They represent the only fungi in the Hypocreomycetidae with apically free, filiform to cylindrical, persistent or partially disintegrating paraphyses. The systematic placement of two other dematiaceous hyphomycetes was resolved based on DNA sequences; Phragmocephala stemphylioides is a member of the Pleurotheciales and Triadelphia uniseptata is within the Savoryellales.

13.
Persoonia ; 35: 242-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26823635

RESUMEN

The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial ß -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.

14.
Stud Mycol ; 78: 343-71, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25505353

RESUMEN

Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. As a result of this, and the many new species described in recent years, it was necessary to update the list of accepted species in Penicillium. The genus currently contains 354 accepted species, including new combinations for Aspergillus crystallinus, A. malodoratus and A. paradoxus, which belong to Penicillium section Paradoxa. To add to the taxonomic value of the list, we also provide information on each accepted species MycoBank number, living ex-type strains and provide GenBank accession numbers to ITS, ß-tubulin, calmodulin and RPB2 sequences, thereby supplying a verified set of sequences for each species of the genus. In addition to the nomenclatural list, we recommend a standard working method for species descriptions and identifications to be adopted by laboratories working on this genus.

15.
Stud Mycol ; 78: 1-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25492980

RESUMEN

Aspergillus section Circumdati or the Aspergillus ochraceus group, includes species with rough walled stipes, biseriate conidial heads, yellow to ochre conidia and sclerotia that do not turn black. Several species are able to produce mycotoxins including ochratoxins, penicillic acids, and xanthomegnins. Some species also produce drug lead candidates such as the notoamides. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, ß-tubulin and ITS sequences to examine the evolutionary relationships within this section. Based on this approach the section Circumdati is revised and 27 species are accepted, introducing seven new species: A. occultus, A. pallidofulvus, A. pulvericola, A. salwaensis, A. sesamicola, A. subramanianii and A. westlandensis. In addition we correctly apply the name A. fresenii (≡ A. sulphureus (nom. illeg.)). A guide for the identification of these 27 species is provided. These new species can be distinguished from others based on morphological characters, sequence data and extrolite profiles. The previously described A. onikii and A. petrakii were found to be conspecific with A. ochraceus, whilst A. flocculosus is tentatively synonymised with A. ochraceopetaliformis, despite extrolite differences between the two species. Based on the extrolite data, 13 species of section Circumdati produce large amounts of ochratoxin A: A. affinis, A. cretensis, A. fresenii, A. muricatus, A. occultus, A. ochraceopetaliformis (A. flocculosus), A. ochraceus, A. pseudoelegans, A. pulvericola, A. roseoglobulosus, A. sclerotiorum, A. steynii and A. westerdijkiae. Seven additional species produce ochratoxin A inconsistently and/or in trace amounts: A. melleus, A. ostianus, A. persii, A. salwaensis, A. sesamicola, A. subramanianii and A. westlandensis. The most important species regarding potential ochratoxin A contamination in agricultural products are A. ochraceus, A. steynii and A. westerdijkiae.

16.
Stud Mycol ; 78: 63-139, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25492981

RESUMEN

As part of a worldwide survey of the indoor mycobiota, dust was collected from nine countries. Analyses of dust samples included the culture-dependent dilution-to-extinction method and the culture-independent 454-pyrosequencing. Of the 7 904 isolates, 2 717 isolates were identified as belonging to Aspergillus, Penicillium and Talaromyces. The aim of this study was to identify isolates to species level and describe the new species found. Secondly, we wanted to create a reliable reference sequence database to be used for next-generation sequencing projects. Isolates represented 59 Aspergillus species, including eight undescribed species, 49 Penicillium species of which seven were undescribed and 18 Talaromyces species including three described here as new. In total, 568 ITS barcodes were generated, and 391 ß-tubulin and 507 calmodulin sequences, which serve as alternative identification markers.

17.
Stud Mycol ; 78: 141-73, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25492982

RESUMEN

Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera. The International Commission of Penicillium and Aspergillus decided to keep Aspergillus instead of using smaller genera. In this paper, we present the arguments for this decision. We introduce new combinations for accepted species presently lacking an Aspergillus name and provide an updated accepted species list for the genus, now containing 339 species. To add to the scientific value of the list, we include information about living ex-type culture collection numbers and GenBank accession numbers for available representative ITS, calmodulin, ß-tubulin and RPB2 sequences. In addition, we recommend a standard working technique for Aspergillus and propose calmodulin as a secondary identification marker.

18.
Stud Mycol ; 78: 373-451, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25492984

RESUMEN

Species belonging to Penicillium section Aspergilloides have a world-wide distribution with P. glabrum, P. spinulosum and P. thomii the most well-known species of this section. These species occur commonly and can be isolated from many substrates including soil, food, bark and indoor environments. The taxonomy of these species has been investigated several times using various techniques, but species delimitation remains difficult. In the present study, 349 strains belonging to section Aspergilloides were subjected to multilocus molecular phylogenetic analyses using partial ß-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Section Aspergilloides is subdivided into 12 clades and 51 species. Twenty-five species are described here as new and P. yezoense, a species originally described without a Latin diagnosis, is validated. Species belonging to section Aspergilloides are phenotypically similar and most have monoverticillate conidiophores and grow moderately or quickly on agar media. The most important characters to distinguish these species were colony sizes on agar media, growth at 30 °C, ornamentation and shape of conidia, sclerotium production and stipe roughness.

19.
Persoonia ; 31: 42-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24761034

RESUMEN

Current literature accepts 17 species in Penicillium section Sclerotiora. Several produce colonies in bright yellow to orange colours and have monoverticillate conidiophores, apart from P. herquei, P. malachiteum and P. nodositatum, which are biverticillate. The focus of this paper is to refine the concepts of the species currently accepted in the section and introduce five new species, named after the Dutch Royal family as P. vanoranjei, P. maximae, P. amaliae, P. alexiae and P. arianeae. Penicillium vanoranjei produces orange (Dutch = oranje) colonies in culture, and is named after Willem-Alexander Claus George Ferdinand, 'Zijne Koninklijke Hoogheid de Prins van Oranje' (translated from Dutch as: 'His Royal Highness the Prince of Orange') and his family, to coincide with his coronation. We review the current taxonomic positions of P. lilacinoechinulatum and P. nodositatum, both currently considered to be synonyms of P. bilaiae. Sequence data generated in this study show that both species are phylogenetically distinct. Penicillium lilacinoechinulatum is closely related to P. amaliae sp. nov., whereas P. nodositatum does not belong to Penicillium sensu stricto. All species were compared morphologically and phylogenetically, based on ß-tubulin and calmodulin DNA data. A table summarising the morphological characters of all species is included, together with photomicrographs and recommended DNA markers for identification.

20.
Persoonia ; 29: 78-100, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23606767

RESUMEN

Species classified in Penicillium sect. Chrysogena are primary soil-borne and the most well-known members are P. chrysogenum and P. nalgiovense. Penicillium chrysogenum has received much attention because of its role in the production on penicillin and as a contaminant of indoor environments and various food and feedstuffs. Another biotechnologically important species is P. nalgiovense, which is used as a fungal starter culture for the production of fermented meat products. Previous taxonomic studies often had conflicting species circumscriptions. Here, we present a multigene analysis, combined with phenotypic characters and extrolite data, demonstrating that sect. Chrysogena consists of 18 species. Six of these are newly described here (P. allii-sativi, P. desertorum, P. goetzii, P. halotolerans, P. tardochrysogenum, P. vanluykii) and P. lanoscoeruleum was found to be an older name for P. aethiopicum. Each species produces a unique extrolite profile. The species share phenotypic characters, such as good growth on CYA supplemented with 5 % NaCl, ter- or quarterverticillate branched conidiophores and short, ampulliform phialides (< 9 µm). Conidial colours, production of ascomata and ascospores, shape and ornamentation of conidia and growth rates on other agar media are valuable for species identification. Eight species (P. allii-sativi, P. chrysogenum, P. dipodomyis, P. flavigenum, P. nalgiovense, P. rubens, P. tardochrysogenum and P. vanluykii) produce penicillin in culture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...