Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(10): 4176-4181, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35512394

RESUMEN

Electron paramagnetic resonance (EPR) can provide unique insight into the chemical structure and magnetic properties of dopants in oxide and semiconducting materials that are of interest for applications in electronics, catalysis, and quantum sensing. Here, we demonstrate that EPR in combination with scanning tunneling microscopy (STM) allows for probing the bonding and charge state of alkali metal atoms on an ultrathin magnesium oxide layer on a Ag substrate. We observe a magnetic moment of 1 µB for Li2, LiNa, and Na2 dimers corresponding to spin radicals with a charge state of +1e. Single alkali atoms have the same charge state and no magnetic moment. The ionization of the adsorbates is attributed to charge transfer through the oxide to the metal substrate. Our work highlights the potential of EPR-STM to provide insight into dopant atoms that are relevant for the control of the electrical properties of surfaces and nanodevices.

2.
Adv Mater ; 33(9): e2006281, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33506577

RESUMEN

The efficient conversion of spin to charge transport and vice versa is of major relevance for the detection and generation of spin currents in spin-based electronics. Interfaces of heterostructures are known to have a marked impact on this process. Here, terahertz (THz) emission spectroscopy is used to study ultrafast spin-to-charge-current conversion (S2C) in about 50 prototypical F|N bilayers consisting of a ferromagnetic layer F (e.g., Ni81 Fe19 , Co, or Fe) and a nonmagnetic layer N with strong (Pt) or weak (Cu and Al) spin-orbit coupling. Varying the structure of the F/N interface leads to a drastic change in the amplitude and even inversion of the polarity of the THz charge current. Remarkably, when N is a material with small spin Hall angle, a dominant interface contribution to the ultrafast charge current is found. Its magnitude amounts to as much as about 20% of that found in the F|Pt reference sample. Symmetry arguments and first-principles calculations strongly suggest that the interfacial S2C arises from skew scattering of spin-polarized electrons at interface imperfections. The results highlight the potential of skew scattering for interfacial S2C and propose a promising route to enhanced S2C by tailored interfaces at all frequencies from DC to terahertz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA