Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 739, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874886

RESUMEN

Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.


Asunto(s)
Acrilamida , Estrés Oxidativo , Espermatozoides , Testículo , Masculino , Acrilamida/toxicidad , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Humanos , Testículo/efectos de los fármacos , Testículo/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacología
2.
Zygote ; 32(2): 149-153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38384250

RESUMEN

Electromagnetic radiation (EMR) has deleterious effects on sperm motility and viability, as well as oocyte membrane and organelle structure. The aim was to assess the effects of cell phone radiation on preimplantation embryo morphokinetics and blastocyst viability in mice. For superovulation, 20 female mice were treated with intraperitoneal (IP) injections of 10 IU pregnant mare's serum gonadotropin (Folligon® PMSG), followed by 10 IU of human chorionic gonadotropin (hCG) after 48 h. The zygotes (n = 150) from the control group were incubated for 4 days. The experimental zygotes (n = 150) were exposed to a cell phone emitting EMR with a frequency range 900-1800 MHz for 30 min on day 1. Then, all embryos were cultured in the time-lapse system and annotated based on time points from the 2-cell stage (t2) to hatched blastocyst (tHDyz), as well as abnormal cleavage patterns. Blastocyst viability was assessed using Hoechst and propidium iodide staining. Significant increases (P < 0.05) were observed in the cleavage division time points of t2, t8, t10, and t12 of the experimental group compared with the controls. In terms of blastocyst formation parameters, a delay in embryo development was observed in the experimental group compared with the controls. Data analysis of the time intervals between the two groups showed a significant difference in the s3 time interval (P < 0.05). Also, the rates of fragmentation, reverse cleavage, vacuole formation, and embryo arrest were significantly higher in the experimental group (P < 0.05). Furthermore, the cell survival rate in the experimental group was lower than the control group (P < 0.05). Exposure to EMR has detrimental consequences for preimplantation embryo development in mice. These effects can manifest as defects in the cleavage stage and impaired blastocyst formation, leading to lower cell viability.


Asunto(s)
Blastocisto , Teléfono Celular , Radiación Electromagnética , Desarrollo Embrionario , Animales , Femenino , Blastocisto/efectos de la radiación , Blastocisto/fisiología , Blastocisto/citología , Ratones , Desarrollo Embrionario/efectos de la radiación , Masculino , Embarazo , Técnicas de Cultivo de Embriones/métodos , Supervivencia Celular/efectos de la radiación , Superovulación/efectos de la radiación
3.
Clin Exp Reprod Med ; 51(1): 13-19, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263592

RESUMEN

Radiofrequency electromagnetic radiation (RF-EMR) from various sources may impact health due to the generation of frequency bands. Broad pulses emitted within frequency bands can be absorbed by cells, influencing their function. Numerous laboratory studies have demonstrated that mobile phones-generally the most widely used devices-can have harmful effects on sex cells, such as sperm and oocytes, by producing RF-EMR. Moreover, some research has indicated that RF-EMR generated by mobile phones can influence sperm parameters, including motility, morphology, viability, and (most critically) DNA structure. Consequently, RF-EMR can disrupt both sperm function and fertilization. However, other studies have reported that exposure of spermatozoa to RF-EMR does not affect the functional parameters or genetic structure of sperm. These conflicting results likely stem from differences among studies in the duration and exposure distance, as well as the species of animal used. This report was undertaken to review the existing research discussing the effects of RF-EMR on the DNA integrity of mammalian spermatozoa.

4.
J Cell Mol Med ; 28(2): e18052, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041559

RESUMEN

Fibrosis refers to excessive build-up of scar tissue and extracellular matrix components in different organs. In recent years, it has been revealed that different cytokines and chemokines, especially Transforming growth factor beta (TGF-ß) is involved in the pathogenesis of fibrosis. It has been shown that TGF-ß is upregulated in fibrotic tissues, and contributes to fibrosis by mediating pathways that are related to matrix preservation and fibroblasts differentiation. There is no doubt that antioxidants protect against different inflammatory conditions by reversing the effects of nitrogen, oxygen and sulfur-based reactive elements. Oxidative stress has a direct impact on chronic inflammation, and as results, prolonged inflammation ultimately results in fibrosis. Different types of antioxidants, in the forms of vitamins, natural compounds or synthetic ones, have been proven to be beneficial in the protection against fibrotic conditions both in vitro and in vivo. In this study, we reviewed the role of different compounds with antioxidant activity in induction or inhibition of TGF-ß/SMAD signalling pathway, with regard to different fibrotic conditions such as gastro-intestinal fibrosis, cardiac fibrosis, pulmonary fibrosis, skin fibrosis, renal fibrosis and also some rare cases of fibrosis, both in animal models and cell lines.


Asunto(s)
Fibrosis Pulmonar , Factor de Crecimiento Transformador beta , Animales , Factor de Crecimiento Transformador beta/metabolismo , Antioxidantes/farmacología , Fibrosis , Inflamación , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
5.
Environ Pollut ; 336: 122411, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37598936

RESUMEN

Due to the increasing use of smart mobile phones, the impact of radiofrequency electromagnetic radiation (RF-EMR) on reproductive health has become a serious concern. This study investigated the effect of mobile phone RF-EMR with frequency 900-1800 MHZ on the mouse embryo morphokinetics and genotoxic effect in laboratory conditions. After ovarian stimulation in mice, the MII oocytes were collected and underwent by in vitro fertilization (IVF) method. The generated zygotes were divided into control and exposed groups. Then, the zygotes with 30 min of exposure to mobile phone RF-EMR, and the control zygotes without exposure, were incubated in the time-lapse for 5 days. The intracellular reactive oxygen species (ROS) level, morphokinetic, embryo viability rate, and Gene expression were evaluated. Exposure of zygotes to RF-EMR by inducing ROS caused a significant decrease in blastocyst viability (87.85 ± 2.86 versus 94.23 ± 2.44), delay in cleavage development (t3-t12) and also increased the time (in hours) to reach the blastocyst stage (97.44 ± 5.21 versus 92.56 ± 6.7) compared to the control group. A significant increase observed in mRNA levels of Hsp70 in exposed animals; while Sod gene expression showed a significant down-regulation in this group compared to the controls, respectively. However, there was no significant change in the transcript level of proapoptotic and antiapoptotic genes in embryos of the exposed group compared to the controls. RF-EMR emitted by mobile phone with a frequency of 900-1800 MHZ, through inducing the production of ROS and oxidative stress, could negatively affect the growth and development as well as the transcript levels of oxidative stress associated genes in the preimplantation embryos of mice.


Asunto(s)
Teléfono Celular , Estrés Oxidativo , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Radiación Electromagnética , Apoptosis , Blastocisto/metabolismo
6.
Heliyon ; 9(6): e16848, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37303564

RESUMEN

Endocrine disruptors such as bisphenol A (BPA) and some of its analogues, including BPS, BPAF, and BPE, are used extensively in the manufacture of plastics. These synthetic chemicals could seriously alter the functionality of the female reproductive system. Although the number of studies conducted on other types of bisphenols is smaller than the number of studies on BPA, the purpose of this review study was to evaluate the effects of bisphenol compounds, particularly BPA, on hormone production and on genes involved in ovarian steroidogenesis in both in vitro (human and animal cell lines) and in vivo (animal models) studies. The current data show that exposure to bisphenol compounds has adverse effects on ovarian steroidogenesis. For example, BPA, BPS, and BPAF can alter the normal function of the hypothalamic-pituitary-gonadal (HPG) axis by targeting kisspeptin neurons involved in steroid feedback signals to gonadotropin-releasing hormone (GnRH) cells, resulting in abnormal production of LH and FSH. Exposure to BPA, BPS, BPF, and BPB had adverse effects on the release of some hormones, namely 17-ß-estradiol (E2), progesterone (P4), and testosterone (T). BPA, BPE, BPS, BPF, and BPAF are also capable of negatively altering the transcription of a number of genes involved in ovarian steroidogenesis, such as the steroidogenic acute regulatory protein (StAR, involved in the transfer of cholesterol from the outer to the inner mitochondrial membrane, where the steroidogenesis process begins), cytochrome P450 family 17 subfamily A member 1 (Cyp17a1, which is involved in the biosynthesis of androgens such as testosterone), 3 beta-hydroxysteroid dehydrogenase enzyme (3ß-HSD, involved in the biosynthesis of P4), and cytochrome P450 family 19 subfamily A member 1 (Cyp19a1, involved in the biosynthesis of E2). Exposure to BPA, BPB, BPF, and BPS at prenatal or prepubertal stages could decrease the number of antral follicles by activating apoptosis and autophagy pathways, resulting in decreased production of E2 and P4 by granulosa cells (GCs) and theca cells (TCs), respectively. BPA and BPS impair ovarian steroidogenesis by reducing the function of some important cell receptors such as estrogens (ERs, including ERα and ERß), progesterone (PgR), the orphan estrogen receptor gamma (ERRγ), the androgen receptor (AR), the G protein-coupled estrogen receptor (GPER), the FSHR (follicle-stimulating hormone receptor), and the LHCGR (luteinizing hormone/choriogonadotropin receptor). In animal models, the effects of bisphenol compounds depend on the type of animals, their age, and the duration and dose of bisphenols, while in cell line studies the duration and doses of bisphenols are the matter.

7.
Clin Exp Reprod Med ; 49(2): 110-116, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35698773

RESUMEN

OBJECTIVE: Sperm vitrification leads to the production of reactive oxygen species (ROS) that can damage the functional parameters of sperm. The present study aimed to investigate the antioxidant effect of Nigella sativa extract on motility, plasma membrane function, mitochondrial membrane potential (MMP), DNA damage, and intracellular ROS production. METHODS: A total of 20 sperm samples were used. Samples were divided into six experimental groups, including groups with aqueous extract from N. sativa seeds at concentrations of 1% to 6%, a cryopreserved control group, and a fresh control group. RESULTS: Statistical analysis showed significantly higher total sperm motility at concentrations of 3% to 6% than in the vitrified semen control group. Additionally, progressive motility and all motion characteristics at all concentrations were significantly higher than in the vitrified semen control group. The presence of N. sativa seed extract also improved the quality of the sperm parameters assayed in all experimental groups (1%-6%; intracellular ROS production, DNA damage, MMP, and sperm membrane function) compared to the control group. CONCLUSION: Higher concentrations of N. sativa led to improvements in all sperm parameters and sperm quality. These findings indicate that N. sativa seed extract is effective for improving the quality of sperm after vitrification.

8.
Zygote ; : 1-7, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34583799

RESUMEN

Cell phones operate with a wide range of frequency bands and emit radiofrequency-electromagnetic radiation (RF-EMR). Concern on the possible health hazards of RF-EMR has been growing in many countries because these RF-EMR pulses may be absorbed into the body cells, directly affecting them. There are some in vitro and in vivo animal studies related to the consequences of RF-EMR exposure from cell phones on embryo development and offspring. In addition, some studies have revealed that RF-EMR from cellular phone may lead to decrease in the rates of fertilization and embryo development, as well as the risk of the developmental anomalies, other studies have reported that it does not interfere with in vitro fertilization or intracytoplasmic sperm injection success rates, or the chromosomal aberration rate. Of course, it is unethical to study the effect of waves generated from cell phones on the forming human embryos. Conversely, other mammals have many similarities to humans in terms of anatomy, physiology and genetics. Therefore, in this review we focused on the existing literature evaluating the potential effects of RF-EMR on mammalian embryonic and fetal development.

9.
Biomed Pharmacother ; 142: 112040, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34416630

RESUMEN

Treatment of cancer in young adults is associated with several side effects, particularly in the reproductive system. Detrimental effects of chemotherapy on the germ cells depend on many factors including primary semen parameters, the way of drug administration, the kind and dose of chemotherapeutic regimens, and the phase of spermatogenesis during the time of drug administration. Lack of appropriate fertility preservation treatments particularly in the affected children necessitates the introduction of methods to amend the harmful effects of chemotherapeutic agents on male germ cells. Several studies have assessed the toxic effects of chemotherapeutic agents in rodent models and tested a number of antioxidants to evaluate their possible impact on the preservation of sperm cells. In the present manuscript, we describe the effects of the mostly investigated chemotherapeutic drugs in this regard i.e., cisplatin, doxorubicin, paclitaxel, 5-fluorouracil, and cyclophosphamide. As several in vivo and in vitro studies have shown the impact of antioxidants on chemotherapy-induced damage of sperms, we also describe the protective effects of antioxidants in this regard.


Asunto(s)
Antineoplásicos/efectos adversos , Antioxidantes/farmacología , Espermatozoides/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Antioxidantes/uso terapéutico , Cisplatino/efectos adversos , Cisplatino/farmacología , Ciclofosfamida/efectos adversos , Ciclofosfamida/farmacología , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Fertilidad/efectos de los fármacos , Fluorouracilo/efectos adversos , Fluorouracilo/farmacología , Humanos , Masculino , Paclitaxel/efectos adversos , Paclitaxel/farmacología
10.
Biometals ; 34(3): 439-491, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33761043

RESUMEN

Infertility is regarded as a global health problem affecting 8-12% of couples. Male factors are regarded as the main cause of infertility in 40% of infertile couples and contribute to this condition in combination with female factors in another 20% of cases. Abnormal sperm parameters such as oligospermia, asthenospermia, and teratozoospermia result in male factor infertility. Several studies have shown the deteriorative impact of heavy metals on sperm parameters and fertility in human subjects or animal models. Other studies have pointed to the role of antioxidants in counteracting the detrimental effects of heavy metals. In the currents study, we summarize the main outcomes of studies that assessed the counteracting impacts of heavy metal and antioxidants on male fertility. Based on the provided data from animal studies, it seems rational to administrate appropriate antioxidants in persons who suffer from abnormal sperm parameters and infertility due to exposure to toxic elements. Yet, further human studies are needed to approve the beneficial effects of these antioxidants.


Asunto(s)
Antioxidantes/farmacología , Infertilidad Masculina/metabolismo , Metales Pesados/efectos adversos , Animales , Antioxidantes/metabolismo , Humanos , Masculino , Metales Pesados/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
11.
Cryobiology ; 90: 89-95, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31330124

RESUMEN

Despite advances in vitrification techniques for sperm cryopreservation, cryo-damages of sperm caused by generation of reactive oxygen species (ROS) continue to impede implementation of this technique. This study analyses the effects of taurine and hypotaurine as anti-oxidants during vitrification of human sperms. The study was performed in two steps. In the first step, 20 normospermic semen samples were vitrified in the presence of varying concentrations of taurine and hypotaurine, and their effects as anti-oxidant agents on classical sperm parameters, hyaluronan-binding assay (HBA), lipid peroxidation (LPO) and acrosome reaction (AR) were studied. Statistical analyses showed that the sperm parameters in all vitrified groups decreased significantly (P < 0.05) compared to the fresh group. However, HBA and acrosome integrity in vitrified groups containing taurine and 50 mM of hypotaurine were better than in the control group (P < 0.05). The morphology of the vitrified group was good only in the group that contained 50 mM of hypotaurine (P < 0.05). Based on the results from the first step, 50 mM of hypotaurine was considered the ideal anti-oxidant formulation and further tests were carried out on 10 normospermic semen samples with this protecting agent. In addition to the mentioned parameters, the expression of heat shock proteinA2 (HSPA2) was studied in the vitrified group with 50 mM hypotaurine, warmed under two different warming temperatures 37 and 42 °C. 50 mM Hypotaurine was found to equally improve motility, morphology, HBA, and AR after warming at 37 °C and 42 °C (P < 0.05). However, at both warming temperatures, the expression of HSPA2 was reduced in all vitrified groups comparing to the fresh group (P < 0.05). In conclusion, taurine and hypotaurine antioxidants, especially 50 mM hypotaurine, are able to reduce deleterious cryo-injuries on morphology, acrosome and HBA and improve sperm recovery at both warming temperatures (37 and 42 °C). However, they do not have any protective action on expression of HSPA2.


Asunto(s)
Reacción Acrosómica/efectos de los fármacos , Antioxidantes/farmacología , Proteínas HSP70 de Choque Térmico/biosíntesis , Preservación de Semen/métodos , Taurina/análogos & derivados , Taurina/farmacología , Acrosoma/fisiología , Animales , Criopreservación/métodos , Respuesta al Choque Térmico , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Vitrificación/efectos de los fármacos
12.
J Photochem Photobiol B ; 178: 489-495, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29232573

RESUMEN

Free radicals and reactive oxygen species (ROS) are generated using various endogenous systems or from external sources such as exposure to different physiochemicals. Ionizing radiation damage to the cell can be caused by the direct or indirect effects of radiotherapy processes. Silymarin (SM), a flavanolignan compound, has been identified as a natural potent antioxidant with cytoprotection activities due to scavenging free radicals. The aim of the present study was to evaluate the radioprotective effect of SM on sperm parameters of mice induced by γ-rays. A total number of 40 adult, male NMRI mice were randomly divided into four equal groups. The control group was neither treated with SM nor irradiated by γ-rays. The second group was only irradiated with 2Gy of γ-rays. The third group was firstly treated with 50mg/kg of SM for 7 consecutive days, and one day later, last injections were irradiated by 2Gy of γ-rays. The fourth groups received only 50mg/kg of SM for 7 consecutive days. All the animals were treated intraperitoneally. Histopathological and morphometrical examinations were performed. The data were analyzed using ANOVA and Tukey post hoc test. A value of p<0.05 was considered significant. The results showed that in the radiation-only group when compared with those treated with SM and irradiated, a significant different was observed in testicular parameters and DNA damage (p<0.05). In conclusion, SM can be considered as a promising herbal radioprotective agent in complementary medicine which may play an important role to protect normal spermatocytes against possible effects of γ-radiation-induced cellular damage.


Asunto(s)
Rayos gamma , Protectores contra Radiación/farmacología , Silimarina/farmacología , Espermatozoides/efectos de los fármacos , Animales , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Histonas/metabolismo , Masculino , Ratones , Protaminas/metabolismo , Protectores contra Radiación/química , Especies Reactivas de Oxígeno/metabolismo , Silimarina/química , Motilidad Espermática/efectos de los fármacos , Motilidad Espermática/efectos de la radiación , Espermatozoides/efectos de la radiación , Testículo/efectos de los fármacos , Testículo/fisiología , Testículo/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...