Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(42): eabp9530, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37851804

RESUMEN

Although initially successful, treatments with chemotherapy often fail because of the recurrence of chemoresistant metastases. Since these tumors develop after treatment, resistance is generally thought to occur in response to chemotherapy. However, alternative mechanisms of intrinsic chemoresistance in the chemotherapy-naïve setting may exist but remain poorly understood. Here, we study drug-naïve murine breast cancer brain metastases (BCBMs) to identify how cancer cells growing in a secondary site can acquire intrinsic chemoresistance without cytotoxic agent exposure. We demonstrate that drug-naïve murine breast cancer cells that form cancer lesions in the brain undergo vascular mimicry and concomitantly express the adenosine 5'-triphosphate-binding cassette transporter breast cancer resistance protein (BCRP), a common marker of brain endothelial cells. We reveal that expression of BCRP by the BCBM tumor cells protects them against doxorubicin and topotecan. We conclude that BCRP overexpression can cause intrinsic chemoresistance in cancer cells growing in metastatic sites without prior chemotherapy exposure.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Neoplasias de la Mama , Animales , Femenino , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/genética , Células Endoteliales/metabolismo , Proteínas de Neoplasias/metabolismo
2.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37873142

RESUMEN

According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, was shown to suppress intestinal stemness. Here, we employed Paneth cells (PCs) as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation. Upon inflammation, PC-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in inflammatory bowel disease (IBD) patients but also of a larger fraction of sporadic colon cancers. The latter is likely due to the inflammatory consequences of Western-style dietary habits, the major colon cancer risk factor. Computational methods designed to predict the cell-of-origin of cancer confirmed that, in a substantial fraction of sporadic colon cancers the cells-of-origin are secretory lineages and not stem cells.

3.
Cancers (Basel) ; 14(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35804890

RESUMEN

(1) Background: an increasing number of breast cancer patients develop lethal brain metastases (BM). The complete removal of these tumors by surgery becomes complicated when cells infiltrate into the brain parenchyma. However, little is known about the nature of these invading cells in breast cancer brain metastasis (BCBM). (2) Methods: we use intravital microscopy through a cranial window to study the behavior of invading cells in a mouse model of BCBM. (3) Results: we demonstrate that BCBM cells that escape from the metastatic mass and infiltrate into brain parenchyma undergo epithelial-to-mesenchymal transition (EMT). Moreover, cells undergoing EMT revert to an epithelial state when growing tumor masses in the brain. Lastly, through multiplex immunohistochemistry, we confirm the presence of these infiltrative cells in EMT in patient samples. (4) Conclusions: together, our data identify the critical role of EMT in the invasive behavior of BCBM, which warrants further consideration to target those cells when treating BCBM.

4.
Clin Cancer Res ; 28(5): 960-971, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965952

RESUMEN

PURPOSE: Extensive work in preclinical models has shown that microenvironmental cells influence many aspects of cancer cell behavior, including metastatic potential and their sensitivity to therapeutics. In the human setting, this behavior is mainly correlated with the presence of immune cells. Here, in addition to T cells, B cells, macrophages, and mast cells, we identified the relevance of nonimmune cell types for breast cancer survival and therapy benefit, including fibroblasts, myoepithelial cells, muscle cells, endothelial cells, and seven distinct epithelial cell types. EXPERIMENTAL DESIGN: Using single-cell sequencing data, we generated reference profiles for all these cell types. We used these reference profiles in deconvolution algorithms to optimally detangle the cellular composition of more than 3,500 primary breast tumors of patients that were enrolled in the SCAN-B and MATADOR clinical trials, and for which bulk mRNA sequencing data were available. RESULTS: This large data set enables us to identify and subsequently validate the cellular composition of microenvironments that distinguish differential survival and treatment benefit for different treatment regimens in patients with primary breast cancer. In addition to immune cells, we have identified that survival and therapy benefit are characterized by various contributions of distinct epithelial cell types. CONCLUSIONS: From our study, we conclude that differential survival and therapy benefit of patients with breast cancer are characterized by distinct microenvironments that include specific populations of immune and epithelial cells.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Microambiente Celular , Células Endoteliales/patología , Femenino , Humanos , Microambiente Tumoral/genética
5.
Oncogene ; 40(45): 6343-6353, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34584219

RESUMEN

In breast cancer the transcription factor SOX4 has been shown to be associated with poor survival, increased tumor size and metastasis formation. This has mostly been attributed to the ability of SOX4 to regulate Epithelial-to-Mesenchymal-Transition (EMT). However, SOX4 regulates target gene transcription in a context-dependent manner that is determined by the cellular and epigenetic state. In this study we have investigated the loss of SOX4 in mammary tumor development utilizing organoids derived from a PyMT genetic mouse model of breast cancer. Using CRISPR/Cas9 to abrogate SOX4 expression, we found that SOX4 is required for inhibiting differentiation by regulating a subset of genes that are highly activated in fetal mammary stem cells (fMaSC). In this way, SOX4 re-activates an oncogenic transcriptional program that is regulated in many progenitor cell-types during embryonic development. SOX4-knockout organoids are characterized by the presence of more differentiated cells that exhibit luminal or basal gene expression patterns, but lower expression of cell cycle genes. In agreement, primary tumor growth and metastatic outgrowth in the lungs are impaired in SOX4KO tumors. Finally, SOX4KO tumors show a severe loss in competitive capacity to grow out compared to SOX4-proficient cells in primary tumors. Our study identifies a novel role for SOX4 in maintaining mammary tumors in an undifferentiated and proliferative state. Therapeutic manipulation of SOX4 function could provide a novel strategy for cancer differentiation therapy, which would promote differentiation and inhibit cycling of tumor cells.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Organoides/trasplante , Factores de Transcripción SOXC/genética , Animales , Neoplasias de la Mama/genética , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Neoplasias Pulmonares/genética , Ratones , Trasplante de Neoplasias , Organoides/patología
6.
Cell Stem Cell ; 26(4): 569-578.e7, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32169167

RESUMEN

Colorectal cancer stem cells (CSCs) express Lgr5 and display extensive stem cell-like multipotency and self-renewal and are thought to seed metastatic disease. Here, we used a mouse model of colorectal cancer (CRC) and human tumor xenografts to investigate the cell of origin of metastases. We found that most disseminated CRC cells in circulation were Lgr5- and formed distant metastases in which Lgr5+ CSCs appeared. This plasticity occurred independently of stemness-inducing microenvironmental factors and was indispensable for outgrowth, but not establishment, of metastases. Together, these findings show that most colorectal cancer metastases are seeded by Lgr5- cells, which display intrinsic capacity to become CSCs in a niche-independent manner and can restore epithelial hierarchies in metastatic tumors.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Biomarcadores de Tumor , Humanos , Células Madre Neoplásicas , Receptores Acoplados a Proteínas G
7.
Nat Commun ; 11(1): 785, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034145

RESUMEN

Extracellular signals such as TGF-ß can induce epithelial-to-mesenchymal transition (EMT) in cancers of epithelial origin, promoting molecular and phenotypical changes resulting in pro-metastatic characteristics. We identified C/EBPα as one of the most TGF-ß-mediated downregulated transcription factors in human mammary epithelial cells. C/EBPα expression prevents TGF-ß-driven EMT by inhibiting expression of known EMT factors. Depletion of C/EBPα is sufficient to induce mesenchymal-like morphology and molecular features, while cells that had undergone TGF-ß-induced EMT reverted to an epithelial-like state upon C/EBPα re-expression. In vivo, mice injected with C/EBPα-expressing breast tumor organoids display a dramatic reduction of metastatic lesions. Collectively, our results show that C/EBPα is required for maintaining epithelial homeostasis by repressing the expression of key mesenchymal markers, thereby preventing EMT-mediated tumorigenesis. These data suggest that C/EBPα is a master epithelial "gatekeeper" whose expression is required to prevent unwarranted mesenchymal transition, supporting an important role for EMT in mediating breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Glándulas Mamarias Humanas/patología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Células Cultivadas , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Glándulas Mamarias Humanas/metabolismo , Ratones SCID , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Transl Biophotonics ; 2(4): e202000009, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34341777

RESUMEN

During lung cancer operations a rapid and reliable assessment of tumor tissue can reduce operation time and potentially improve patient outcomes. We show that third harmonic generation (THG), second harmonic generation (SHG) and two-photon excited autofluorescence (2PEF) microscopy reveals relevant, histopathological information within seconds in fresh unprocessed human lung samples. We used a compact, portable microscope and recorded images within 1 to 3 seconds using a power of 5 mW. The generated THG/SHG/2PEF images of tumorous and nontumorous tissues are compared with the corresponding standard histology images, to identify alveolar structures and histopathological hallmarks. Cellular structures (tumor cells, macrophages and lymphocytes) (THG), collagen (SHG) and elastin (2PEF) are differentiated and allowed for rapid identification of carcinoid with solid growth pattern, minimally enlarged monomorphic cell nuclei with salt-and-pepper chromatin pattern, and adenocarcinoma with lipidic and micropapillary growth patterns. THG/SHG/2PEF imaging is thus a promising tool for clinical intraoperative assessment of lung tumor tissue.

9.
Cell Rep ; 29(9): 2565-2569.e3, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31775027

RESUMEN

Epithelial-to-mesenchymal transition (EMT) has long been thought to be crucial for metastasis. Recently a study challenged this idea by demonstrating that metastases were seeded by tumor cells that were not marked by an EMT lineage-tracing reporter on the basis of the expression of the mesenchymal marker fsp1. However, the results of this study and their interpretation are under debate. Here, we combine the lineage-tracing reporter with our real-time EMT-state reporter and show that the fsp1-based EMT lineage-tracing reporter does not mark all disseminating mesenchymal cells with metastatic potential. Our findings demonstrate that fsp1-mediated lineage tracing does not allow any conclusions about the requirement of EMT for metastasis. Instead our data are fully consistent with previous reports that EMT is not a binary phenomenon but rather a spectrum of cellular states.


Asunto(s)
Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/inmunología , Humanos
10.
Nat Commun ; 10(1): 3800, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444332

RESUMEN

E-cadherin (CDH1) is a master regulator of epithelial cell adherence junctions and a well-established tumor suppressor in Invasive Lobular Carcinoma (ILC). Intriguingly, somatic inactivation of E-cadherin alone in mouse mammary epithelial cells (MMECs) is insufficient to induce tumor formation. Here we show that E-cadherin loss induces extrusion of luminal MMECs to the basal lamina. Remarkably, E-cadherin-deficient MMECs can breach the basal lamina but do not disseminate into the surrounding fat pad. Basal lamina components laminin and collagen IV supported adhesion and survival of E-cadherin-deficient MMECs while collagen I, the principle component of the mammary stromal micro-environment did not. We uncovered that relaxation of actomyosin contractility mediates adhesion and survival of E-cadherin-deficient MMECs on collagen I, thereby allowing ILC development. Together, these findings unmask the direct consequences of E-cadherin inactivation in the mammary gland and identify aberrant actomyosin contractility as a critical barrier to ILC formation.


Asunto(s)
Actomiosina/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Carcinoma Lobular/patología , Neoplasias Mamarias Experimentales/patología , Animales , Neoplasias de la Mama/genética , Cadherinas/genética , Carcinoma Lobular/genética , Adhesión Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Células Epiteliales , Femenino , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Ratones , Ratones Transgénicos , Cultivo Primario de Células
11.
Cell Stem Cell ; 24(6): 927-943.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31130514

RESUMEN

The deubiquitinating enzyme BAP1 is a tumor suppressor, among others involved in cholangiocarcinoma. BAP1 has many proposed molecular targets, while its Drosophila homolog is known to deubiquitinate histone H2AK119. We introduce BAP1 loss-of-function by CRISPR/Cas9 in normal human cholangiocyte organoids. We find that BAP1 controls the expression of junctional and cytoskeleton components by regulating chromatin accessibility. Consequently, we observe loss of multiple epithelial characteristics while motility increases. Importantly, restoring the catalytic activity of BAP1 in the nucleus rescues these cellular and molecular changes. We engineer human liver organoids to combine four common cholangiocarcinoma mutations (TP53, PTEN, SMAD4, and NF1). In this genetic background, BAP1 loss results in acquisition of malignant features upon xenotransplantation. Thus, control of epithelial identity through the regulation of chromatin accessibility appears to be a key aspect of BAP1's tumor suppressor function. Organoid technology combined with CRISPR/Cas9 provides an experimental platform for mechanistic studies of cancer gene function in a human context.


Asunto(s)
Colangiocarcinoma/genética , Cromatina/metabolismo , Células Epiteliales/fisiología , Neoplasias Hepáticas/genética , Hígado/fisiología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Bioingeniería , Carcinogénesis , Células Cultivadas , Cromatina/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Citoesqueleto/metabolismo , Femenino , Humanos , Mutación con Pérdida de Función/genética , Ratones , Ratones SCID , Organoides , Trasplante Heterólogo , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética
12.
Cell Rep ; 14(10): 2281-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26947068

RESUMEN

Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT) has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Ductal/patología , Transición Epitelial-Mesenquimal , Células Madre Neoplásicas/metabolismo , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma Ductal/etiología , Carcinoma Ductal/metabolismo , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Ratones Noqueados , Ratones SCID , Células Madre Neoplásicas/citología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina-2/deficiencia , Receptores de Interleucina-2/genética
13.
Sci Transl Med ; 4(158): 158ra145, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23115354

RESUMEN

Cell dynamics in subcutaneous and breast tumors can be studied through conventional imaging windows with intravital microscopy. By contrast, visualization of the formation of metastasis has been hampered by the lack of long-term imaging windows for metastasis-prone organs, such as the liver. We developed an abdominal imaging window (AIW) to visualize distinct biological processes in the spleen, kidney, small intestine, pancreas, and liver. The AIW can be used to visualize processes for up to 1 month, as we demonstrate with islet cell transplantation. Furthermore, we have used the AIW to image the single steps of metastasis formation in the liver over the course of 14 days. We observed that single extravasated tumor cells proliferated to form "pre-micrometastases," in which cells lacked contact with neighboring tumor cells and were active and motile within the confined region of the growing clone. The clones then condensed into micrometastases where cell migration was strongly diminished but proliferation continued. Moreover, the metastatic load was reduced by suppressing tumor cell migration in the pre-micrometastases. We suggest that tumor cell migration within pre-micrometastases is a contributing step that can be targeted therapeutically during liver metastasis formation.


Asunto(s)
Neoplasias Hepáticas/diagnóstico , Microscopía por Video/métodos , Micrometástasis de Neoplasia/diagnóstico , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...