Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012163, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648214

RESUMEN

Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.


Asunto(s)
Coronavirus , Genoma Viral , Nidovirales , Filogenia , Animales , Nidovirales/genética , Coronavirus/genética , Coronavirus/clasificación , Vertebrados/virología , Vertebrados/genética , Peces/virología , Evolución Molecular , Minería de Datos , Infecciones por Nidovirales/virología , Infecciones por Nidovirales/genética
3.
Nat Commun ; 14(1): 1574, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949039

RESUMEN

The discovery of nackednaviruses provided new insight into the evolutionary history of the hepatitis B virus (HBV): The common ancestor of HBV and nackednaviruses was non-enveloped and while HBV acquired an envelope during evolution, nackednaviruses remained non-enveloped. We report the capsid structure of the African cichlid nackednavirus (ACNDV), determined by cryo-EM at 3.7 Å resolution. This enables direct comparison with the known capsid structures of HBV and duck HBV, prototypic representatives of the mammalian and avian lineages of the enveloped Hepadnaviridae, respectively. The sequence identity with HBV is 24% and both the ACNDV capsid protein fold and the capsid architecture are very similar to those of the Hepadnaviridae and HBV in particular. Acquisition of the hepadnaviral envelope was thus not accompanied by a major change in capsid structure. Dynamic residues at the spike tip are tentatively assigned by solid-state NMR, while the C-terminal domain is invisible due to dynamics. Solid-state NMR characterization of the capsid structure reveals few conformational differences between the quasi-equivalent subunits of the ACNDV capsid and an overall higher capsid structural disorder compared to HBV. Despite these differences, the capsids of ACNDV and HBV are structurally highly similar despite the 400 million years since their separation.


Asunto(s)
Proteínas de la Cápside , Hepadnaviridae , Animales , Proteínas de la Cápside/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Cápside/metabolismo , Hepadnaviridae/metabolismo , Mamíferos/metabolismo
4.
Int J Cancer ; 153(1): 173-182, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36444499

RESUMEN

Chronic inflammation, linked to the presence of bovine milk and meat factors (BMMFs) and specific subsets of macrophages, results in oxygen radical synthesis and induction of mutations in DNA of actively replicating cells and replicating single stranded DNA. Cancers arising from this process have been characterized as indirect carcinogenesis by infectious agents (without persistence of genes of the agent in premalignant or cancers cells). Here, we investigate structural properties of pleomorphic vesicles, regularly identified by staining peritumor tissues of colorectal, lung and pancreatic cancer for expression of BMMF Rep. The latter represents a subgroup of BMMF1 proteins involved in replication of small single-stranded circular plasmids of BMMF, but most likely also contributing to pleomorphic vesicular structures found in the periphery of colorectal, lung and pancreatic cancers. Structurally dense regions are demonstrated in preselected areas of colorectal cancer, after staining with monoclonal antibodies against BMMF1 Rep. Similar structures were observed in human embryonic cells (HEK293TT) overexpressing Rep. These data suggest that Rep or Rep isoforms contribute to the structural formation of vesicles.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pancreáticas , Humanos , Animales , Leche , Replicación del ADN , Plásmidos , Neoplasias Pancreáticas/genética , Pulmón , Carne , Neoplasias Colorrectales/genética
5.
Biomolecules ; 12(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36008967

RESUMEN

Virus discovery has been fueled by new technologies ever since the first viruses were discovered at the end of the 19th century. Starting with mechanical devices that provided evidence for virus presence in sick hosts, virus discovery gradually transitioned into a sequence-based scientific discipline, which, nowadays, can characterize virus identity and explore viral diversity at an unprecedented resolution and depth. Sequencing technologies are now being used routinely and at ever-increasing scales, producing an avalanche of novel viral sequences found in a multitude of organisms and environments. In this perspective article, we argue that virus discovery has started to undergo another transformation prompted by the emergence of new approaches that are sequence data-centered and primarily computational, setting them apart from previous technology-driven innovations. The data-driven virus discovery approach is largely uncoupled from the collection and processing of biological samples, and exploits the availability of massive amounts of publicly and freely accessible data from sequencing archives. We discuss open challenges to be solved in order to unlock the full potential of data-driven virus discovery, and we highlight the benefits it can bring to classical (mostly molecular) virology and molecular biology in general.


Asunto(s)
Virus , Biología Molecular , Análisis de Secuencia , Virus/genética
6.
J Am Chem Soc ; 144(19): 8536-8550, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35512333

RESUMEN

The hepatitis B virus (HBV) is the leading cause of persistent liver infections. Its DNA-based genome is synthesized through reverse transcription of an RNA template inside the assembled capsid shell. In addition to the structured assembly domain, the capsid protein harbors a C-terminal extension that mediates both the enclosure of RNA during capsid assembly and the nuclear entry of the capsid during infection. The arginine-rich motifs within this extension, though common to many viruses, have largely escaped atomic-scale investigation. Here, we leverage solution and solid-state nuclear magnetic resonance spectroscopy at ambient and cryogenic temperatures, under dynamic nuclear polarization signal enhancement, to investigate the organization of the genome within the capsid. Transient interactions with phosphate groups of the RNA backbone confine the arginine-rich motifs to the interior capsid space. While no secondary structure is induced in the C-terminal extension, interactions with RNA counteract the formation of a disulfide bond, which covalently tethers this peptide arm onto the inner capsid surface. Electrostatic and covalent contributions thus compete in the spatial regulation of capsid architecture. This disulfide switch represents a coupling mechanism between the structured assembly domain of the capsid and the enclosed nucleic acids. In particular, it enables the redox-dependent regulation of the exposure of the C-terminal extension on the capsid surface, which is required for nuclear uptake of the capsid. Phylogenetic analysis of capsid proteins from hepadnaviruses points toward a function of this switch in the persistence of HBV infections.


Asunto(s)
Proteínas de la Cápside , Ensamble de Virus , Arginina/metabolismo , Proteínas de la Cápside/química , Disulfuros/metabolismo , Virus de la Hepatitis B/metabolismo , Filogenia , ARN Viral/genética
7.
Virus Evol ; 8(1): veac007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242360

RESUMEN

Even 30 years after the discovery of the hepatitis C virus (HCV) in humans there is still no vaccine available. Reasons for this include the high mutation rate of HCV, which allows the virus to escape immune recognition and the absence of an immunocompetent animal model for vaccine development. Phylogenetically distinct hepaciviruses (genus Hepacivirus, family Flaviviridae) have been isolated from diverse species, each with a narrow host range: the equine hepacivirus (EqHV) is the closest known relative of HCV. In this study, we used amplicon-based deep-sequencing to investigate the viral intra-host population composition of the genomic regions encoding the surface glycoproteins E1 and E2. Patterns of E1E2 substitutional evolution were compared in longitudinally sampled EqHV-positive sera of naturally and experimentally infected horses and HCV-positive patients. Intra-host virus diversity was higher in chronically than in acutely infected horses, a pattern which was similar in the HCV-infected patients. However, overall glycoprotein variability was higher in HCV compared to EqHV. Additionally, selection pressure in HCV populations was higher, especially within the N-terminal region of E2, corresponding to the hypervariable region 1 (HVR1) in HCV. An alignment of glycoprotein sequences from diverse hepaciviruses identified the HVR1 as a unique characteristic of HCV: hepaciviruses from non-human species lack this region. Together, these data indicate that EqHV infection of horses could represent a powerful surrogate animal model to gain insights into hepaciviral evolution and HCVs HVR1-mediated immune evasion strategy.

8.
Viruses ; 13(9)2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34578307

RESUMEN

Lyssaviruses are neurotropic rhabdoviruses thought to be restricted to mammalian hosts, and to originate from bats. The identification of lyssavirus sequences from amphibians and reptiles by metatranscriptomics thus comes as a surprise and challenges the mammalian origin of lyssaviruses. The novel sequences of the proposed American tree frog lyssavirus (ATFLV) and anole lizard lyssavirus (ALLV) reveal substantial phylogenetic distances from each other and from bat lyssaviruses, with ATFLV being the most distant. As virus isolation has not been successful yet, we have here studied the functionality of the authentic ATFLV- and ALLV-encoded glycoproteins in the context of rabies virus pseudotype particles. Cryogenic electron microscopy uncovered the incorporation of the plasmid-encoded G proteins in viral envelopes. Infection experiments revealed the infectivity of ATFLV and ALLV G-coated RABV pp for a broad spectrum of cell lines from humans, bats, and reptiles, demonstrating membrane fusion activities. As presumed, ATFLV and ALLV G RABV pp escaped neutralization by human rabies immune sera. The present findings support the existence of contagious lyssaviruses in poikilothermic animals, and reveal a broad cell tropism in vitro, similar to that of the rabies virus.


Asunto(s)
Anfibios/virología , Glicoproteínas/genética , Lyssavirus/patogenicidad , Mamíferos/virología , Reptiles/virología , Animales , Línea Celular , Glicoproteínas/inmunología , Células HEK293 , Especificidad del Huésped , Humanos , Lyssavirus/química , Lyssavirus/clasificación , Lyssavirus/inmunología , Pruebas de Neutralización , Filogenia , Virus de la Rabia/inmunología , Virus de la Rabia/patogenicidad , Zoonosis Virales/transmisión
9.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753499

RESUMEN

Hepadnaviruses, with the human hepatitis B virus as prototype, are small, enveloped hepatotropic DNA viruses which replicate by reverse transcription of an RNA intermediate. Replication is initiated by a unique protein-priming mechanism whereby a hydroxy amino acid side chain of the terminal protein (TP) domain of the viral polymerase (P) is extended into a short DNA oligonucleotide, which subsequently serves as primer for first-strand synthesis. A key component in the priming of reverse transcription is the viral RNA element epsilon, which contains the replication origin and serves as a template for DNA primer synthesis. Here, we show that recently discovered non-enveloped fish viruses, termed nackednaviruses [C. Lauber et al., Cell Host Microbe 22, 387-399 (2017)], employ a fundamentally similar replication mechanism despite their huge phylogenetic distance and major differences in genome organization and viral lifestyle. In vitro cross-priming studies revealed that few strategic nucleotide substitutions in epsilon enable site-specific protein priming by heterologous P proteins, demonstrating that epsilon is functionally conserved since the two virus families diverged more than 400 Mya. In addition, other cis elements crucial for the hepadnavirus-typical replication of pregenomic RNA into relaxed circular double-stranded DNA were identified at conserved positions in the nackednavirus genomes. Hence, the replication mode of both hepadnaviruses and nackednaviruses was already established in their Paleozoic common ancestor, making it a truly ancient and evolutionary robust principle of genome replication that is more widespread than previously thought.


Asunto(s)
Replicación del ADN , ADN Viral/biosíntesis , Evolución Molecular , Hepadnaviridae/fisiología , Transcripción Reversa , Proteínas Virales/metabolismo , Replicación Viral , Secuencia Conservada , Hepadnaviridae/clasificación , Hepadnaviridae/genética , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/genética , Filogenia , ARN Viral/genética , Origen de Réplica , Proteínas Virales/genética
10.
Antiviral Res ; 186: 104973, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166575

RESUMEN

Hepatitis B virus (HBV) poses a major global health burden with 260 million people being chronically infected and 890,000 dying annually from complications in the course of the infection. HBV is a small enveloped virus with a reverse-transcribed DNA genome that infects hepatocytes and can cause acute and chronic infections of the liver. HBV is endemic in humans and apes representing the prototype member of the viral family Hepadnaviridae and can be divided into 10 genotypes. Hepadnaviruses have been found in all vertebrate classes and constitute an ancient viral family that descended from non-enveloped progenitors more than 360 million years ago. The de novo emergence of the envelope protein gene was accompanied with the liver-tropism and resulted in a tight virus-host association. The oldest HBV genomes so far have been isolated from human remains of the Bronze Age and the Neolithic (~7000 years before present). Despite the remarkable stability of the hepadnaviral genome over geological eras, HBV is able to rapidly evolve within an infected individual under pressure of the immune response or during antiviral treatment. Treatment with currently available antivirals blocking intracellular replication of HBV allows controlling of high viremia and improving liver health during long-term therapy of patients with chronic hepatitis B (CHB), but they are not sufficient to cure the disease. New therapy options that cover all HBV genotypes and emerging viral variants will have to be developed soon. In addition to the antiviral treatment of chronically infected patients, continued efforts to expand the global coverage of the currently available HBV vaccine will be one of the key factors for controlling the rising global spread of HBV. Certain improvements of the vaccine (e.g. inclusion of PreS domains) could counteract known problems such as low or no responsiveness of certain risk groups and waning anti-HBs titers leading to occult infections, especially with HBV genotypes E or F. But even with an optimal vaccine and a cure for hepatitis B, global eradication of HBV would be difficult to achieve because of an existing viral reservoir in primates and bats carrying closely related hepadnaviruses with zoonotic potential.


Asunto(s)
Antivirales/aislamiento & purificación , Evolución Molecular , Variación Genética , Virus de la Hepatitis B/genética , Hepatitis B/tratamiento farmacológico , Hepatitis B/prevención & control , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Quirópteros/virología , Genoma Viral , Genotipo , Hepatitis B/virología , Vacunas contra Hepatitis B/administración & dosificación , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/efectos de los fármacos , Hepatocitos/virología , Humanos , Primates/virología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
11.
Annu Rev Virol ; 7(1): 263-288, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600157

RESUMEN

New hepatitis B virions released from infected hepatocytes are the result of an intricate maturation process that starts with the formation of the nucleocapsid providing a confined space where the viral DNA genome is synthesized via reverse transcription. Virion assembly is finalized by the enclosure of the icosahedral nucleocapsid within a heterogeneous envelope. The latter contains integral membrane proteins of three sizes, collectively known as hepatitis B surface antigen, and adopts multiple conformations in the course of the viral life cycle. The nucleocapsid conformation depends on the reverse transcription status of the genome, which in turn controls nucleocapsid interaction with the envelope proteins for virus exit. In addition, after secretion the virions undergo a distinct maturation step during which a topological switch of the large envelope protein confers infectivity. Here we review molecular determinants for envelopment and models that postulate molecular signals encoded in the capsid scaffold conducive or adverse to the recruitment of envelope proteins.


Asunto(s)
Virus de la Hepatitis B/genética , Nucleocápside/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral , ADN Viral/genética , Genoma Viral , Virus de la Hepatitis B/química , Virus de la Hepatitis B/fisiología , Humanos , Procesamiento Proteico-Postraduccional , Ensamble de Virus/genética
12.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31315989

RESUMEN

Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5' untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps.IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.


Asunto(s)
Hepacivirus/enzimología , Hepacivirus/crecimiento & desarrollo , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Iniciación de la Transcripción Genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Línea Celular , Perfilación de la Expresión Génica , Humanos
13.
Virus Res ; 260: 38-48, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30452944

RESUMEN

RNA viruses are believed to have originated from a common ancestor, but how this ancestral genome evolved into the large variety of genomic architectures and viral proteomes we see today remains largely unknown. Tackling this question is hindered by the lack of universally conserved proteins other than the RNA-dependent RNA polymerase (RdRp) as well as a limited RNA virus sampling. The latter is still heavily biased towards relatively few viral lineages from a non-representative collection of hosts, which complicates studies aiming to reveal possible trajectories during the evolution of RNA virus genomes that are favored over others. We report the discovery of 11 highly divergent lineages of viruses with genomic architectures that resemble those of the astroviruses. These genomes were initially identified through a sequence homology search in more than 6600 plant transcriptome projects from the Sequence Read Archive (SRA) using astrovirus representatives as query. Seed-based viral genome assembly of unprocessed SRA data for several dozens of the most promising hits resulted in two viral genome sequences with full-length coding regions, nine partial genomes and a much larger number of short sequence fragments. Genomic and phylogenetic characterization of the 11 discovered viruses, which we coined plastroviruses (plant-associated astro-like viruses), showed that they are related to both astro- and potyviruses and allowed us to identify divergent Serine protease, RdRp and viral capsid domains encoded in the plastrovirus genome. Interestingly, some of the plastroviruses shared different features with potyviruses including the replacement of the catalytic Ser by a Cys residue in the protease active site. These results suggest that plastroviruses may have reached different points on an evolutionary trajectory from astro-like to poty-like genomes. A model how potyviruses might have emerged from (pl)astro-like ancestors in a multi-step process is discussed.


Asunto(s)
Astroviridae/genética , Evolución Molecular , Orden Génico , Genoma Viral , Plantas/virología , Potyvirus/genética , Biología Computacional , Filogenia , Homología de Secuencia , Proteínas Virales/genética
14.
Antiviral Res ; 158: 135-142, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30031759

RESUMEN

One of the most promising viral targets in current hepatitis B virus (HBV) drug development is the core protein due to its multiple roles in the viral life cycle. Here we investigated the differences in the mode of action and antiviral activity of representatives of six different capsid assembly modifier (CAM) scaffolds: three from the well-characterized scaffolds heteroarylpyrimidine (HAP), sulfamoylbenzamide (SBA), and phenylpropenamide (PPA), and three from novel scaffolds glyoxamide-pyrrolamide (GPA), pyrazolyl-thiazole (PT), and dibenzo-thiazepin-2-one (DBT). The target activity and antiviral efficacy of the different CAMs were tested in biochemical and cellular assays. Analytical size exclusion chromatography and transmission electron microscopy showed that only the HAP compound induced formation of aberrant non-capsid structures (class II mode of action), while the remaining CAMs did not affect capsid gross morphology (class I mode of action). Intracellular lysates from the HepAD38 cell line, inducibly replicating HBV, showed no reduction in the quantities of intracellular core protein or capsid after treatment with SBA, PPA, GPA, PT, or DBT compounds; however HAP-treatment led to a profound decrease in both. Additionally, immunofluorescence staining of compound-treated HepAD38 cells showed that all non-HAP CAMs led to a shift in the equilibrium of HBV core antigen (HBcAg) towards complete cytoplasmic staining, while the HAP induced accumulation of HBcAg aggregates in the nucleus. Our study demonstrates that the novel scaffolds GPA, PT, and DBT exhibit class I modes of action, alike SBA and PPA, whereas HAP remains the only scaffold belonging to class II inhibitors.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/efectos de los fármacos , Proteínas de la Cápside/metabolismo , Cápside/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Antivirales/química , Benzamidas/química , Benzamidas/farmacología , Benzoatos , Línea Celular , Desarrollo de Medicamentos , Antígenos del Núcleo de la Hepatitis B , Virus de la Hepatitis B/metabolismo , Humanos , Pirimidinas/química , Pirimidinas/farmacología , Proteínas del Núcleo Viral , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
15.
Gastroenterology ; 154(6): 1791-1804.e22, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29410097

RESUMEN

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. METHODS: PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. RESULTS: HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. CONCLUSIONS: In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response.


Asunto(s)
Antivirales/farmacología , Hepacivirus/inmunología , Virus de la Hepatitis B/inmunología , Hepatocitos/inmunología , Inmunidad Innata/inmunología , Interferones/farmacología , Coinfección/tratamiento farmacológico , Coinfección/inmunología , Coinfección/virología , ADN Viral/efectos de los fármacos , ADN Viral/inmunología , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepatitis B/tratamiento farmacológico , Hepatitis B/inmunología , Hepatitis B/virología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Hepatitis C/tratamiento farmacológico , Hepatitis C/inmunología , Hepatitis C/virología , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Hígado/citología , Hígado/inmunología , Hígado/virología , Replicación Viral/efectos de los fármacos
16.
Reprod Biomed Online ; 36(2): 188-196, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29198423

RESUMEN

Fertility-preserving measures are becoming important for patients receiving oncological treatment. One method involves cryopreservation of ovarian tissue and transplanting it when treatment is completed. We report complications resulting from surgical and fertility medicine, and the results of procedures for the removal and transplantation of ovarian tissue carried out within the FertiProtekt network. A survey using a structured questionnaire was conducted among the FertiProtekt network centres between November 2015 and June 2016. The analysis included surgical techniques used to remove and transplant ovarian tissue, surgical complications and results. Laparoscopic removal and transplantation of ovarian tissue have a low risk of complications. Surgical complications occurred in three of the network's 1373 ovarian tissue removals (n = 1302) and transplantations (n = 71); two complications (0.2%) occurred during removal and one during transplantation. Menstruation resumed in 47 out of 58 women (81%) who underwent ovarian tissue transplantation. Hormonal activity occurred in 63.2% of transplantations with a follow-up of 6 months or over. Sixteen pregnancies occurred in 14 patients, with nine births. The risks and complications of removal and transplantation of ovarian tissue are similar to those of standard laparoscopy. These procedures are becoming standard for fertility protection in cancer patients.


Asunto(s)
Preservación de la Fertilidad/métodos , Procedimientos Quirúrgicos Ginecológicos/métodos , Ovario/trasplante , Femenino , Preservación de la Fertilidad/efectos adversos , Preservación de la Fertilidad/estadística & datos numéricos , Procedimientos Quirúrgicos Ginecológicos/efectos adversos , Procedimientos Quirúrgicos Ginecológicos/estadística & datos numéricos , Humanos
17.
Cell Host Microbe ; 22(3): 387-399.e6, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28867387

RESUMEN

Hepatitis B viruses (HBVs), which are enveloped viruses with reverse-transcribed DNA genomes, constitute the family Hepadnaviridae. An outstanding feature of HBVs is their streamlined genome organization with extensive gene overlap. Remarkably, the ∼1,100 bp open reading frame (ORF) encoding the envelope proteins is fully nested within the ORF of the viral replicase P. Here, we report the discovery of a diversified family of fish viruses, designated nackednaviruses, which lack the envelope protein gene, but otherwise exhibit key characteristics of HBVs including genome replication via protein-primed reverse-transcription and utilization of structurally related capsids. Phylogenetic reconstruction indicates that these two virus families separated more than 400 million years ago before the rise of tetrapods. We show that HBVs are of ancient origin, descending from non-enveloped progenitors in fishes. Their envelope protein gene emerged de novo, leading to a major transition in viral lifestyle, followed by co-evolution with their hosts over geologic eras.


Asunto(s)
Evolución Molecular , Enfermedades de los Peces/virología , Hepadnaviridae/genética , Virus de la Hepatitis B/genética , Hepatitis B/virología , Secuencia de Aminoácidos , Animales , Cápside/química , Cápside/metabolismo , Peces , Genoma Viral , Hepadnaviridae/química , Hepadnaviridae/clasificación , Hepadnaviridae/aislamiento & purificación , Virus de la Hepatitis B/química , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
18.
Cell Host Microbe ; 20(1): 25-35, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27321908

RESUMEN

Hepatitis B virus (HBV) replication is strictly limited to the liver. Virions attach to hepatocytes through interactions of the viral PreS envelope protein domain with heparan sulfate proteoglycans (HSPGs). However, HSPG is ubiquitously present on many cell types, suggesting that HBV employs mechanisms to avoid attachment at extrahepatic sites. We demonstrate that HBV particles are released from cells in an inactive form with PreS hidden in the interior. These HSPG-non-binding (N-type) particles develop receptor binding competence by translocating PreS across the envelope onto their surface. Conversion into HSPG-binding (B-type) particles occurs spontaneously and renders HBV infectious. Low-dose inoculation of mice with human liver xenografts demonstrates superiority of N-type particles in establishing infections, while mature B-type virions, generated via N-type conversion, are profoundly impaired, correlating with non-selective accumulation in extrahepatic tissues. This dynamic topology switch represents a maturation process utilized by HBV to most likely avoid non-productive docking outside the liver.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Procesamiento Proteico-Postraduccional , Acoplamiento Viral , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Trasplante de Hígado , Ratones , Transporte de Proteínas
19.
J Biol Chem ; 286(31): 27278-87, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21659521

RESUMEN

RIG-I is a major innate immune sensor for viral infection, triggering an interferon (IFN)-mediated antiviral response upon cytosolic detection of viral RNA. Double-strandedness and 5'-terminal triphosphates were identified as motifs required to elicit optimal immunological signaling. However, very little is known about the response dynamics of the RIG-I pathway, which is crucial for the ability of the cell to react to diverse classes of viral RNA while maintaining self-tolerance. In the present study, we addressed the molecular mechanism of RIG-I signal detection and its translation into pathway activation. By employing highly quantitative methods, we could establish the length of the double-stranded RNA (dsRNA) to be the most critical determinant of response strength. Size exclusion chromatography and direct visualization in scanning force microscopy suggested that this was due to cooperative oligomerization of RIG-I along dsRNA. The initiation efficiency of this oligomerization process critically depended on the presence of high affinity motifs, like a 5'-triphosphate. It is noteworthy that for dsRNA longer than 200 bp, internal initiation could effectively compensate for a lack of terminal triphosphates. In summary, our data demonstrate a very flexible response behavior of the RIG-I pathway, in which sensing and integration of at least two distinct signals, initiation efficiency and double strand length, allow the host cell to mount an antiviral response that is tightly adjusted to the type of the detected signal, such as viral genomes, replication intermediates, or small by-products.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Inmunidad Innata , Animales , Secuencia de Bases , Línea Celular , Proteína 58 DEAD Box , Cartilla de ADN , Humanos , Ratones , Microscopía de Fuerza Atómica , Fosforilación , ARN Bicatenario/fisiología , Receptores Inmunológicos , Transducción de Señal
20.
J Virol ; 84(8): 3879-88, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20130049

RESUMEN

The envelope of the human hepatitis B virus (HBV) contains three membrane proteins (L, M, and S). They accomplish different functions in HBV infectivity and nucleocapsid envelopment. Infectivity determinants have been assigned to the N-terminal part of the pre-S1 domain of the L protein and the antigenic loop of the S domain in the L and/or S protein. Nucleocapsid envelopment requires a C-terminal sequence within pre-S1, including the five N-terminal amino acids of pre-S2 as part of the L protein. However, the role of the M protein and the pre-S2 domain of the L protein are not entirely understood. We addressed this question and analyzed assembly competence and infectivity of viruses that lack the M protein and, at the same time, carry alterations in the pre-S2 domain of L. These include deletions, in part frameshift mutations and a randomization of virtually the entire pre-S2 sequence. We found that the M protein is dispensable for HBV in vitro infectivity. Viruses that lack the M protein and contain a mostly randomized pre-S2 sequence assemble properly and are infectious in HepaRG cells and primary human hepatocytes. While deletions of 20 amino acids in the pre-S2 domain of L protein allowed the production of infectious virions, more extended deletions interfered with assembly. This indicates that the pre-S2 domain of the L protein serves an important role for virus assembly, presumably as a spacer that supports conformational changes of L protein but does not participate as part of the M protein or as a subdomain of the L protein in virus entry.


Asunto(s)
Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Ensamble de Virus , Línea Celular , Células Cultivadas , Eliminación de Gen , Hepatocitos/virología , Humanos , Mutación , Estructura Terciaria de Proteína , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...