Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 63(13): 7008-7032, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32462873

RESUMEN

Herein, we report the discovery of a series of JAK1-selective kinase inhibitors with high potency and excellent JAK family subtype selectivity. A fragment screening hit 1 with a pyrazolopyridone core and a JAK1 bias was selected as the starting point for our fragment-based lead generation efforts. A two-stage strategy was chosen with the dual aims of improving potency and JAK1 selectivity: Optimization of the lipophilic ribose pocket-targeting substituent was followed by the introduction of a variety of P-loop-targeting functional groups. Combining the best moieties from both stages of the optimization afforded compound 40, which showed excellent potency and selectivity. Metabolism studies in vitro and in vivo together with an in vitro safety evaluation suggest that 40 may be a viable lead compound for the development of highly subtype-selective JAK1 inhibitors.


Asunto(s)
Diseño de Fármacos , Janus Quinasa 1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Piridonas/química , Piridonas/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Janus Quinasa 1/química , Janus Quinasa 1/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Piridonas/metabolismo , Estereoisomerismo , Especificidad por Sustrato
2.
J Pharmacol Exp Ther ; 327(3): 799-808, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18768780

RESUMEN

We report the first small-molecule protease-activated receptor (PAR) 2 agonists, AC-55541 [N-[[1-(3-bromo-phenyl)-eth-(E)-ylidene-hydrazinocarbonyl]-(4-oxo-3,4-dihydro-phthalazin-1-yl)-methyl]-benzamide] and AC-264613 [2-oxo-4-phenylpyrrolidine-3-carboxylic acid [1-(3-bromo-phenyl)-(E/Z)-ethylidene]-hydrazide], each representing a distinct chemical series. AC-55541 and AC-264613 each activated PAR2 signaling in cellular proliferation assays, phosphatidylinositol hydrolysis assays, and Ca(2+) mobilization assays, with potencies ranging from 200 to 1000 nM for AC-55541 and 30 to 100 nM for AC-264613. In comparison, the PAR2-activating peptide 2-furoyl-LIGRLO-NH(2) had similar potency, whereas SLIGRL-NH(2) was 30 to 300 times less potent. Neither AC-55541 nor AC-264613 had activity at any of the other PAR receptor subtypes, nor did they have any significant affinity for over 30 other molecular targets involved in nociception. Visualization of EYFP-tagged PAR2 receptors showed that each compound stimulated internalization of PAR2 receptors. AC-55541 and AC-264613 were well absorbed when administered intraperitoneally to rats, each reaching micromolar peak plasma concentrations. AC-55541 and AC-264613 were each stable to metabolism by liver microsomes and maintained sustained exposure in rats, with elimination half-lives of 6.1 and 2.5 h, respectively. Intrapaw administration of AC-55541 or AC-264613 elicited robust and persistent thermal hyperalgesia and edema. Coadministration of either a tachykinin 1 (neurokinin 1) receptor antagonist or a transient receptor potential vanilloid (TRPV) 1 antagonist completely blocked these effects. Systemic administration of either AC-55541 or AC-264613 produced a similar degree of hyperalgesia as was observed when the compounds were administered locally. These compounds represent novel small-molecule PAR2 agonists that will be useful in probing the physiological functions of PAR2 receptors.


Asunto(s)
Receptor PAR-2/agonistas , Animales , Señalización del Calcio/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Edema/inducido químicamente , Endocitosis , Hidrólisis/efectos de los fármacos , Hiperalgesia/inducido químicamente , Ligandos , Farmacocinética , Fosfatidilinositoles/metabolismo , Ratas
3.
J Med Chem ; 51(18): 5490-3, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18720984

RESUMEN

Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.


Asunto(s)
Receptor PAR-2/agonistas , Diseño de Fármacos , Humanos , Relación Estructura-Actividad
4.
J Org Chem ; 70(21): 8332-7, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16209575

RESUMEN

A new first-generation catalyst system for nucleophilic catalysis has been developed. It is based on a planar chiral ferrocene skeleton with either the potent nucleophile 4-(dimethylamino)pyridine (DMAP) or the related 4-nitropyridine N-oxide attached in either the 2- or the 3-position. The syntheses are short, efficient, and enantioselective and X-ray crystal structures of both DMAP-derived catalysts are presented. The DMAP-based catalysts were tested in asymmetric reactions and the 3-derivative 14 showed good activity and a moderate level of enantioselectivity. The sense of induction (selectivity) was studied using molecular modeling and the results pointed at new directions for future generations of catalysts based on this design.


Asunto(s)
4-Aminopiridina/análogos & derivados , Compuestos Ferrosos/química , 4-Aminopiridina/química , Catálisis , Metalocenos , Modelos Moleculares , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...