Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36965869

RESUMEN

Hanseniaspora guilliermondii is a well-recognized producer of acetate esters associated with fruity and floral aromas. The molecular mechanisms underneath this production or the environmental factors modulating it remain unknown. Herein, we found that, unlike Saccharomyces cerevisiae, H. guilliermondii over-produces acetate esters and higher alcohols at low carbon-to-assimilable nitrogen (C:N) ratios, with the highest titers being obtained in the amino acid-enriched medium YPD. The evidences gathered support a model in which the strict preference of H. guilliermondii for amino acids as nitrogen sources results in a channeling of keto-acids obtained after transamination to higher alcohols and acetate esters. This higher production was accompanied by higher expression of the four HgAATs, genes, recently proposed to encode alcohol acetyl transferases. In silico analyses of these HgAat's reveal that they harbor conserved AATs motifs, albeit radical substitutions were identified that might result in different kinetic properties. Close homologues of HgAat2, HgAat3, and HgAat4 were only found in members of Hanseniaspora genus and phylogenetic reconstruction shows that these constitute a distinct family of Aat's. These results advance the exploration of H. guilliermondii as a bio-flavoring agent providing important insights to guide future strategies for strain engineering and media manipulation that can enhance production of aromatic volatiles.


Asunto(s)
Hanseniaspora , Vino , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hanseniaspora/genética , Vino/análisis , Ésteres/análisis , Filogenia , Fermentación , Alcoholes/metabolismo , Acetatos/metabolismo , Nitrógeno/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo
2.
DNA Res ; 26(1): 67-83, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462193

RESUMEN

Hanseanispora species, including H. guilliermondii, are long known to be abundant in wine grape-musts and to play a critical role in vinification by modulating, among other aspects, the wine sensory profile. Despite this, the genetics and physiology of Hanseniaspora species remains poorly understood. The first genomic sequence of a H. guilliermondii strain (UTAD222) and the discussion of its potential significance are presented in this work. Metabolic reconstruction revealed that H. guilliermondii is not equipped with a functional gluconeogenesis or glyoxylate cycle, nor does it harbours key enzymes for glycerol or galactose catabolism or for biosynthesis of biotin and thiamine. Also, no fructose-specific transporter could also be predicted from the analysis of H. guilliermondii genome leaving open the mechanisms underlying the fructophilic character of this yeast. Comparative analysis involving H. guilliermondii, H. uvarum, H. opuntiae and S. cerevisiae revealed 14 H. guilliermondii-specific genes (including five viral proteins and one ß-glucosidase). Furthermore, 870 proteins were only found within the Hanseniaspora proteomes including several ß-glucosidases and decarboxylases required for catabolism of biogenic amines. The release of H. guilliermondii genomic sequence and the comparative genomics/proteomics analyses performed, is expected to accelerate research focused on Hanseniaspora species and to broaden their application in the wine industry and in other bio-industries in which they could be explored as cell factories.


Asunto(s)
Fermentación , Genoma Fúngico , Hanseniaspora/genética , Hanseniaspora/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína
3.
Genome Announc ; 5(5)2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28153887

RESUMEN

In this work, we disclose the genome sequence and a corresponding manually curated annotation of the non-Saccharomyces yeast Hanseniaspora guilliermondii UTAD222, a strain shown to have interesting oenological traits for the production of wines with improved aromatic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...