Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801441

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by the aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper the remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.


Asunto(s)
Bacterias/inmunología , Sistema Nervioso Central/inmunología , Microbioma Gastrointestinal/inmunología , Esclerosis Múltiple/patología , Neuroinmunomodulación , Animales , Bacterias/clasificación , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/microbiología
2.
Biochemistry ; 59(3): 329-340, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31774660

RESUMEN

Legumain (asparaginyl endopeptidase) is the only protease with a preference for cleavage after asparagine residues. Increased legumain activity is a hallmark of inflammation, neurodegenerative diseases, and cancer, and legumain inhibitors have exhibited therapeutic effects in mouse models of these pathologies. Improved knowledge of its substrates and cellular functions is a requisite to further validation of legumain as a drug target. We, therefore, aimed to investigate the effects of legumain inhibition in macrophages using an unbiased and systematic approach. By shotgun proteomics, we identified 16 094 unique peptides in RAW264.7 cells. Among these, 326 unique peptides were upregulated in response to legumain inhibition, while 241 were downregulated. Many of these proteins were associated with mitochondria and metabolism, especially iron metabolism, indicating that legumain may have a previously unknown impact on related processes. Furthermore, we used N-terminomics/TAILS (terminal amine isotopic labeling of substrates) to identify potential substrates of legumain. We identified three new proteins that are cleaved after asparagine residues, which may reflect legumain-dependent cleavage. We confirmed that frataxin, a mitochondrial protein associated with the formation of iron-sulfur clusters, can be cleaved by legumain. This further asserts a potential contribution of legumain to mitochondrial function and iron metabolism. Lastly, we also identified a potential new cleavage site within legumain itself that may give rise to a 25 kDa form of legumain that has previously been observed in multiple cell and tissue types. Collectively, these data shed new light on the potential functions of legumain and will be critical for understanding its contribution to disease.


Asunto(s)
Cisteína Endopeptidasas/química , Mitocondrias/metabolismo , Péptidos/genética , Proteómica , Animales , Asparagina/química , Asparagina/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Hierro/metabolismo , Marcaje Isotópico , Macrófagos/química , Macrófagos/metabolismo , Ratones , Mitocondrias/genética , Péptidos/química , Células RAW 264.7
3.
ACS Chem Biol ; 14(11): 2471-2483, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31393699

RESUMEN

Dysregulated protease activity is often implicated in the initiation of inflammation and immune cell recruitment in gastrointestinal inflammatory diseases. Using N-terminomics/TAILS (terminal amine isotopic labeling of substrates), we compared proteases, along with their substrates and inhibitors, between colonic mucosal biopsies of healthy patients and those with ulcerative colitis (UC). Among the 1642 N-termini enriched using TAILS, increased endogenous processing of proteins was identified in UC compared to healthy patients. Changes in the reactome pathways for proteins associated with metabolism, adherens junction proteins (E-cadherin, liver-intestinal cadherin, catenin alpha-1, and catenin delta-1), and neutrophil degranulation were identified between the two groups. Increased neutrophil infiltration and distinct proteases observed in ulcerative colitis may result in extensive break down, altered processing, or increased remodeling of adherens junctions and other cellular functions. Analysis of the preferred proteolytic cleavage sites indicated that the majority of proteolytic activity and processing comes from host proteases, but that key microbial proteases may also play a role in maintaining homeostasis. Thus, the identification of distinct proteases and processing of their substrates improves the understanding of dysregulated proteolysis in normal intestinal physiology and ulcerative colitis.


Asunto(s)
Colitis Ulcerosa/fisiopatología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/metabolismo , Proteolisis , Proteómica/métodos , Adulto , Anciano , Secuencia de Aminoácidos , Sitios de Unión , Biopsia , Cadherinas/metabolismo , Cateninas/metabolismo , Cromatografía Líquida de Alta Presión , Colon/patología , Femenino , Humanos , Marcaje Isotópico/métodos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Péptidos/análisis , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA