Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888340

RESUMEN

The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.

3.
Sci Rep ; 11(1): 4268, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608602

RESUMEN

Ataxia-telangiectasia (A-T) is an autosomal recessive, multisystem disorder characterized by cerebellar degeneration, cancer predisposition, and immune system defects. A major cause of mortality in A-T patients is severe pulmonary disease; however, the underlying causes of the lung complications are poorly understood, and there are currently no curative therapeutic interventions. In this study, we examined the lung phenotypes caused by ATM-deficient immune cells using a mouse model of A-T pulmonary disease. In response to acute lung injury, ATM-deficiency causes decreased survival, reduced blood oxygen saturation, elevated neutrophil recruitment, exaggerated and prolonged inflammatory responses and excessive lung injury compared to controls. We found that ATM null bone marrow adoptively transferred to WT recipients induces similar phenotypes that culminate in impaired lung function. Moreover, we demonstrated that activated ATM-deficient macrophages exhibit significantly elevated production of harmful reactive oxygen and nitrogen species and pro-inflammatory cytokines. These findings indicate that ATM-deficient immune cells play major roles in causing the lung pathologies in A-T. Based on these results, we examined the impact of inhibiting the aberrant inflammatory responses caused by ATM-deficiency with reparixin, a CXCR1/CXCR2 chemokine receptor antagonist. We demonstrated that reparixin treatment reduces neutrophil recruitment, edema and tissue damage in ATM mutant lungs. Thus, our findings indicate that targeted inhibition of CXCR1/CXCR2 attenuates pulmonary phenotypes caused by ATM-deficiency and suggest that this treatment approach represents a viable therapeutic strategy for A-T lung disease.


Asunto(s)
Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/genética , Biomarcadores , Susceptibilidad a Enfermedades , Mediadores de Inflamación/metabolismo , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Bleomicina/efectos adversos , Citocinas/metabolismo , Daño del ADN , Reparación del ADN , Modelos Animales de Enfermedad , Enfermedades Pulmonares/mortalidad , Enfermedades Pulmonares/patología , Ratones , Fenotipo , Pronóstico
4.
Cancer Res ; 77(19): 5327-5338, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28819025

RESUMEN

Hypomorphic mutations in the genes encoding the MRE11/RAD50/NBS1 (MRN) DNA repair complex lead to cancer-prone syndromes. MRN binds DNA double-strand breaks, where it functions in repair and triggers cell-cycle checkpoints via activation of the ataxia-telangiectasia mutated kinase. To gain understanding of MRN in cancer, we engineered mice with B lymphocytes lacking MRN, or harboring MRN in which MRE11 lacks nuclease activities. Both forms of MRN deficiency led to hallmarks of cancer, including oncogenic translocations involving c-Myc and the immunoglobulin locus. These preneoplastic B lymphocytes did not progress to detectable B lineage lymphoma, even in the absence of p53. Moreover, Mre11 deficiencies prevented tumorigenesis in a mouse model strongly predisposed to spontaneous B-cell lymphomas. Our findings indicate that MRN cannot be considered a standard tumor suppressor and instead imply that nuclease activities of MRE11 are required for oncogenesis. Inhibition of MRE11 nuclease activity increased DNA damage and selectively induced apoptosis in cells overexpressing oncogenes, suggesting MRE11 serves an important role in countering oncogene-induced replication stress. Thus, MRE11 may offer a target for cancer therapeutic development. More broadly, our work supports the idea that subtle enhancements of endogenous genome instability can exceed the tolerance of cancer cells and be exploited for therapeutic ends. Cancer Res; 77(19); 5327-38. ©2017 AACR.


Asunto(s)
Linfocitos B/patología , Transformación Celular Neoplásica/patología , Enzimas Reparadoras del ADN/fisiología , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Linfoma de Células B/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transportadoras de Casetes de Unión a ATP/fisiología , Ácido Anhídrido Hidrolasas , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos B/metabolismo , Proteínas de Ciclo Celular/fisiología , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Roturas del ADN de Doble Cadena , Reparación del ADN , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Inestabilidad Genómica , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Proteína Homóloga de MRE11 , Ratones , Mutación , Proteínas Nucleares/fisiología , Oncogenes , Proteínas Proto-Oncogénicas c-myc/genética
5.
Mol Cell Biol ; 37(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28320875

RESUMEN

Allelic exclusion describes the essential immunological process by which feedback repression of sequential DNA rearrangements ensures that only one autosome expresses a functional T or B cell receptor. In wild-type mammals, approximately 60% of cells have recombined the DNA of one T cell receptor ß (TCRß) V-to-DJ-joined allele in a functional configuration, while the second allele has recombined only the DJ sequences; the other 40% of cells have recombined the V to the DJ segments on both alleles, with only one of the two alleles predicting a functional TCRß protein. Here we report that the transgenic overexpression of GATA3 leads predominantly to biallelic TCRß gene (Tcrb) recombination. We also found that wild-type immature thymocytes can be separated into distinct populations based on intracellular GATA3 expression and that GATA3LO cells had almost exclusively recombined only one Tcrb locus (that predicted a functional receptor sequence), while GATA3HI cells had uniformly recombined both Tcrb alleles (one predicting a functional and the other predicting a nonfunctional rearrangement). These data show that GATA3 abundance regulates the recombination propensity at the Tcrb locus and provide new mechanistic insight into the historic immunological conundrum for how Tcrb allelic exclusion is mediated.


Asunto(s)
Alelos , Factor de Transcripción GATA3/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Animales , Factor de Transcripción GATA3/genética , Regulación de la Expresión Génica , Ontología de Genes , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Mutación/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Bazo/metabolismo , Timocitos/metabolismo , Recombinación V(D)J/genética
6.
Hum Mol Genet ; 22(24): 4901-13, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23863462

RESUMEN

SNM1B/Apollo is a DNA nuclease that has important functions in telomere maintenance and repair of DNA interstrand crosslinks (ICLs) within the Fanconi anemia (FA) pathway. SNM1B is required for efficient localization of key repair proteins, such as the FA protein, FANCD2, to sites of ICL damage and functions epistatically to FANCD2 in cellular survival to ICLs and homology-directed repair. The FA pathway is also activated in response to replication fork stalling. Here, we sought to determine the importance of SNM1B in cellular responses to stalled forks in the absence of a blocking lesion, such as ICLs. We found that depletion of SNM1B results in hypersensitivity to aphidicolin, a DNA polymerase inhibitor that causes replication stress. We observed that the SNM1B nuclease is required for efficient localization of the DNA repair proteins, FANCD2 and BRCA1, to subnuclear foci upon aphidicolin treatment, thereby indicating SNM1B facilitates direct repair of stalled forks. Consistent with a role for SNM1B subsequent to recognition of the lesion, we found that SNM1B is dispensable for upstream events, including activation of ATR-dependent signaling and localization of RPA, γH2AX and the MRE11/RAD50/NBS1 complex to aphidicolin-induced foci. We determined that a major consequence of SNM1B depletion is a marked increase in spontaneous and aphidicolin-induced chromosomal gaps and breaks, including breakage at common fragile sites. Thus, this study provides evidence that SNM1B functions in resolving replication stress and preventing accumulation of genomic damage.


Asunto(s)
Sitios Frágiles del Cromosoma , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Afidicolina/farmacología , Proteína BRCA1/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromatina/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Exodesoxirribonucleasas , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Expresión Génica , Histonas/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteína de Replicación A/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitinación
7.
Hum Mol Genet ; 21(19): 4225-36, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22736030

RESUMEN

Glutamine (Q) expansion diseases are a family of degenerative disorders caused by the lengthening of CAG triplet repeats present in the coding sequences of seemingly unrelated genes whose mutant proteins drive pathogenesis. Despite all the molecular evidence for the genetic basis of these diseases, how mutant poly-Q proteins promote cell death and drive pathogenesis remains controversial. In this report, we show a specific interaction between the mutant androgen receptor (AR), a protein associated with spinal and bulbar muscular atrophy (SBMA), and the nuclear protein PTIP (Pax Transactivation-domain Interacting Protein), a protein with an unusually long Q-rich domain that functions in DNA repair. Upon exposure to ionizing radiation, PTIP localizes to nuclear foci that are sites of DNA damage and repair. However, the expression of poly-Q AR sequesters PTIP away from radiation-induced nuclear foci. This results in sensitivity to DNA-damaging agents and chromosomal instabilities. In a mouse model of SBMA, evidence for DNA damage is detected in muscle cell nuclei and muscular atrophy is accelerated when one copy of the gene encoding PTIP is removed. These data provide a new paradigm for understanding the mechanisms of cellular degeneration observed in poly-Q expansion diseases.


Asunto(s)
Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Proteínas Portadoras/metabolismo , Reparación del ADN , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , Péptidos/genética , Receptores Androgénicos/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Humanos , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Androgénicos/genética
8.
Hum Mol Genet ; 20(13): 2549-59, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21478198

RESUMEN

Fanconi anemia (FA) is an inherited chromosomal instability disorder characterized by childhood aplastic anemia, developmental abnormalities and cancer predisposition. One of the hallmark phenotypes of FA is cellular hypersensitivity to agents that induce DNA interstrand crosslinks (ICLs), such as mitomycin C (MMC). FA is caused by mutation in at least 14 genes which function in the resolution of ICLs during replication. The FA proteins act within the context of a protein network in coordination with multiple repair factors that function in distinct pathways. SNM1B/Apollo is a member of metallo-ß-lactamase/ßCASP family of nucleases and has been demonstrated to function in ICL repair. However, the relationship between SNM1B and the FA protein network is not known. In the current study, we establish that SNM1B functions epistatically to the central FA factor, FANCD2, in cellular survival after ICL damage and homology-directed repair of DNA double-strand breaks. We also demonstrate that MMC-induced chromosomal anomalies are increased in SNM1B-depleted cells, and this phenotype is not further exacerbated upon depletion of either FANCD2 or another key FA protein, FANCI. Furthermore, we find that SNM1B is required for proper localization of critical repair factors, including FANCD2, BRCA1 and RAD51, to MMC-induced subnuclear foci. Our findings demonstrate that SNM1B functions within the FA pathway during the repair of ICL damage.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/enzimología , Proteínas Nucleares/metabolismo , Transducción de Señal , Alquilantes/farmacología , Inestabilidad Cromosómica/efectos de los fármacos , Roturas del ADN de Doble Cadena , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/genética , Exodesoxirribonucleasas , Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Mitomicina/farmacología , Proteínas Nucleares/genética , Unión Proteica/efectos de los fármacos , Transducción de Señal/genética
9.
Hum Mol Genet ; 20(4): 806-19, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21147755

RESUMEN

The Artemis gene encodes a DNA nuclease that plays important roles in non-homologous end-joining (NHEJ), a major double-strand break (DSB) repair pathway in mammalian cells. NHEJ factors repair general DSBs as well as programmed breaks generated during the lymphoid-specific DNA rearrangement, V(D)J recombination, which is required for lymphocyte development. Mutations that inactivate Artemis cause a human severe combined immunodeficiency syndrome associated with cellular radiosensitivity. In contrast, hypomorphic Artemis mutations result in combined immunodeficiency syndromes of varying severity, but, in addition, are hypothesized to predispose to lymphoid malignancy. To elucidate the distinct molecular defects caused by hypomorphic compared with inactivating Artemis mutations, we examined tumor predisposition in a mouse model harboring a targeted partial loss-of-function disease allele. We find that, in contrast to Artemis nullizygosity, the hypomorphic mutation leads to increased aberrant intra- and interchromosomal V(D)J joining events. We also observe that dysfunctional Artemis activity combined with p53 inactivation predominantly predisposes to thymic lymphomas harboring clonal translocations distinct from those observed in Artemis nullizygosity. Thus, the Artemis hypomorphic allele results in unique molecular defects, tumor spectrum and oncogenic chromosomal rearrangements. Our findings have significant implications for disease outcomes and treatment of patients with different Artemis mutations.


Asunto(s)
Alelos , Aberraciones Cromosómicas , Reordenamiento Génico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo , Animales , Daño del ADN , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Endonucleasas , Humanos , Linfoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Cariotipificación Espectral , Análisis de Supervivencia , Proteína p53 Supresora de Tumor/genética
10.
Nat Struct Mol Biol ; 16(8): 808-13, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19633670

RESUMEN

The Mre11-Rad50-NBS1 (MRN) complex has many roles in response to DNA double-strand breaks, but its functions in repair by nonhomologous end joining (NHEJ) pathways are poorly understood. We have investigated requirements for MRN in class switch recombination (CSR), a programmed DNA rearrangement in B lymphocytes that requires NHEJ. To this end, we have engineered mice that lack the entire MRN complex in B lymphocytes or that possess an intact complex that harbors mutant Mre11 lacking DNA nuclease activities. MRN deficiency confers a strong defect in CSR, affecting both the classic and the alternative NHEJ pathways. In contrast, absence of Mre11 nuclease activities causes a milder phenotype, revealing a separation of function within the complex. We propose a model in which MRN stabilizes distant breaks and processes DNA termini to facilitate repair by both the classical and alternative NHEJ pathways.


Asunto(s)
Linfocitos B/metabolismo , Reparación del ADN , Cambio de Clase de Inmunoglobulina , Transducción de Señal/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ácido Anhídrido Hidrolasas , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Linfocitos B/citología , Secuencia de Bases , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Citometría de Flujo , Histonas/genética , Histonas/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Homóloga de MRE11 , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
11.
Cell ; 135(1): 85-96, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18854157

RESUMEN

The Mre11/Rad50/NBS1 (MRN) complex maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution but play unknown roles in mammals. To define the functions of Mre11, we engineered targeted mouse alleles that either abrogate nuclease activities or inactivate the entire MRN complex. Mre11 nuclease deficiency causes a striking array of phenotypes indistinguishable from the absence of MRN, including early embryonic lethality and dramatic genomic instability. We identify a crucial role for the nuclease activities in homology-directed double-strand-break repair and a contributing role in activating the ATR kinase. However, the nuclease activities are not required to activate ATM after DNA damage or telomere deprotection. Therefore, nucleolytic processing by Mre11 is an essential function of fundamental importance in DNA repair, distinct from MRN control of ATM signaling.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Transformada , Proliferación Celular , Roturas del ADN de Doble Cadena , Daño del ADN , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Fibroblastos/metabolismo , Proteína Homóloga de MRE11 , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Telómero/metabolismo , Proteínas Supresoras de Tumor/metabolismo
12.
Cell ; 124(2): 260-2, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16439201

RESUMEN

A major pathway for repair of DNA double-strand breaks is nonhomologous end-joining (NHEJ). In this issue of Cell, and report the discovery of a new NHEJ factor called Cernunnos-XLF. Both groups report that this protein is mutated in a rare inherited human syndrome characterized by severe immunodeficiency, developmental delay, and hypersensitivity to agents that cause DNA double-strand breaks.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Animales , Enzimas Reparadoras del ADN , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA