Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37055370

RESUMEN

AIMS: Streptococcus mutans is highly sensitive to inhibitors of proton-pumping F-type ATPase (F-ATPase) under acidic conditions. Herein, we investigated the role of S. mutans F-ATPase in acid tolerance using a bacterium expressing the F-ATPase ß subunit at lower levels than the wild-type strain. METHODS AND RESULTS: We generated a mutant S. mutans expressing the catalytic ß subunit of F-ATPase at lower levels than the wild-type bacterium. The mutant cells exhibited a significantly slower growth rate at pH 5.30, whereas the rate was essentially the same as that of wild-type cells at pH 7.40. In addition, the colony-forming ability of the mutant was decreased at pH <4.30 but not at pH 7.40. Thus, the growth rate and survival of S. mutans expressing low levels of the ß subunit were reduced under acidic conditions. CONCLUSIONS: Together with our previous observations, this study indicates that F-ATPase is involved in the acid tolerance mechanism of S. mutans by secreting protons from the cytoplasm.


Asunto(s)
Adenosina Trifosfatasas , Bombas de Protones , Adenosina Trifosfatasas/genética , Bombas de Protones/genética , Protones , Streptococcus mutans , Concentración de Iones de Hidrógeno
2.
Biol Pharm Bull ; 45(10): 1404-1411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184496

RESUMEN

Proton pumping ATPases, both F-type and V/A-type ATPases, generate ATP using electrochemical energy or pump protons/sodium ions by hydrolyzing ATP. The enzymatic reaction and proton transport are coupled through subunit rotation, and this unique rotational mechanism (rotational catalysis) has been intensively studied. Single-molecule and thermodynamic analyses have revealed the detailed rotational mechanism, including the catalytically inhibited state and the roles of subunit interactions. In mammals, F- and V-ATPases are involved in ATP synthesis and organelle acidification, respectively. Most bacteria, including anaerobes, have F- and/or A-ATPases in the inner membrane. However, these ATPases are not believed to be essential in anaerobic bacteria since anaerobes generate sufficient ATP without oxidative phosphorylation. Recent studies suggest that F- and A-ATPases perform indispensable functions beyond ATP synthesis in oral pathogenic anaerobes; F-ATPase is involved in acid tolerance in Streptococcus mutans, and A-ATPase mediates nutrient import in Porphyromonas gingivalis. Consistently, inhibitors of oral bacterial F- and A-ATPases, such as phytopolyphenols and bedaquiline, strongly diminish growth and survival. Herein, we discuss rotational catalysis of bacterial F- and A-ATPases, and discuss their physiological roles, focusing on oral bacteria. We also review the effects of ATPase inhibitors on the growth and survival of oral pathogenic bacteria. The features of the catalytic mechanism and unique physiological roles in oral bacteria highlight the potential for proton pumping ATPases to serve as targets for oral antimicrobial agents.


Asunto(s)
Protones , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato , Animales , Bacterias/metabolismo , Catálisis , Mamíferos/metabolismo , Sodio , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo
3.
Sci Rep ; 12(1): 8455, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589873

RESUMEN

We have shown previously that the lysosomal a3 isoform of the a subunit of vacuolar-type ATPase (V-ATPase) interacts with inactive (GDP-bound form) Rab7, a small GTPase that regulates late endosome/lysosome trafficking, and that a3 recruits Rab7 to secretory lysosomes in mouse osteoclasts. This is essential for outward trafficking of secretory lysosomes and thus for bone resorption. However, the molecular mechanism underlying the recruitment of Rab7 by a3 remains to be fully elucidated. Here, we showed that a3 interacts with the Mon1A-Ccz1 complex, a guanine nucleotide exchange factor (GEF) for Rab7, using HEK293T cells. The interaction was mediated by the amino-terminal half domain of a3 and the longin motifs of Mon1A and Ccz1. Exogenous expression of the GEF promoted the interaction between a3 and Rab7. Mon1A mutants that interact inefficiently with Rab7 interacted with a3 at a similar level to wild-type Mon1A. Lysosomal localization of endogenous Ccz1 was abolished in osteoclasts lacking a3. These results suggest that the lysosomal a3 isoform of V-ATPase interacts with Mon1A-Ccz1, and that a3 is important for Mon1A-Ccz1 localization to secretory lysosomes, which mediates Rab7 recruitment to the organelle.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares , Animales , Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Osteoclastos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
4.
J Biochem ; 169(4): 459-466, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33135054

RESUMEN

In osteoclasts, the a3 isoform of the proton-pumping V-ATPase plays essential roles in anterograde trafficking of secretory lysosomes and extracellular acidification required for bone resorption. This study examined functional complementation of the a isoforms by exogenously expressing the a1, a2 and a3 isoforms in a3-knockout (KO) osteoclasts. The expression levels of a1 and a2 in a3KO osteoclasts were similar, but lower than that of a3. a1 significantly localized to lysosomes, whereas a2 slightly did. On the other hand, a2 interacted with Rab7, a regulator of secretory lysosome trafficking in osteoclasts, more efficiently than a1. a1 partly complemented the functions of a3 in secretory lysosome trafficking and calcium phosphate resorption, while a2 partly complemented the former but not the latter function.


Asunto(s)
Lisosomas/enzimología , Osteoclastos/enzimología , Subunidades de Proteína , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Isoenzimas/metabolismo , Lisosomas/genética , Ratones , Ratones Noqueados , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
5.
Sci Rep ; 9(1): 13587, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537874

RESUMEN

Antimicrobial resistance is a global public threat and raises the need for development of new antibiotics with a novel mode of action. The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to a new class of serine peptidases, family S46. Because S46 peptidases are not found in mammals, these enzymes are attractive targets for novel antibiotics. However, potent and selective inhibitors of these peptidases have not been developed to date. In this study, a high-resolution crystal structure analysis of PgDPP11 using a space-grown crystal enabled us to identify the binding of citrate ion, which could be regarded as a lead fragment mimicking the binding of a substrate peptide with acidic amino acids, in the S1 subsite. The citrate-based pharmacophore was utilized for in silico inhibitor screening. The screening resulted in an active compound SH-5, the first nonpeptidyl inhibitor of S46 peptidases. SH-5 and a lipophilic analog of SH-5 showed a dose-dependent inhibitory effect against the growth of P. gingivalis. The binding mode of SH-5 was confirmed by crystal structure analysis. Thus, these compounds could be lead structures for the development of selective inhibitors of PgDPP11.


Asunto(s)
Benzoatos/farmacología , Ácido Cítrico/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Porphyromonas gingivalis/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Benzoatos/química , Sitios de Unión , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Fosfatos de Inositol , Modelos Moleculares , Conformación Proteica
6.
Arch Biochem Biophys ; 666: 46-51, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30930283

RESUMEN

Streptococcus mutans, a bacterium mainly inhabiting the tooth surface, is a major pathogen of dental caries. The bacterium metabolizes sugars to produce acids, resulting in an acidic microenvironment in the dental plaque. Hence, S. mutans should possess a mechanism for surviving under acidic conditions. In the current study, we report the effects of inhibitors of Escherichia coli proton-pumping F-type ATPase (F-ATPase) on the activity of S. mutans enzyme, and the growth and survival of S. mutans under acidic conditions. Piceatannol, curcumin, and demethoxycurcumin strongly reduced the ATPase activity of S. mutans F-ATPase. Interestingly, these compounds inhibited the growth of S. mutans at pH 5.3 but not at pH 7.3. They also significantly reduced the colony-forming ability of S. mutans after incubation at pH 4.3, while showing essentially no effect at pH 7.3. These observations indicate that S. mutans is highly sensitive to F-ATPase inhibitors under acidic conditions and that F-ATPase plays an important role in acid tolerance of this bacterium.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Concentración de Iones de Hidrógeno , Bombas de Protones/metabolismo , Streptococcus mutans/enzimología , Streptococcus mutans/crecimiento & desarrollo
7.
R Soc Open Sci ; 5(11): 180814, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30564393

RESUMEN

We present research progress made in developing copper/carbon nanotube composites (Cu/CNT) to fulfil a growing demand for lighter copper substitutes with superior electrical, thermal and mechanical performances. Lighter alternatives to heavy copper electrical and data wiring are needed in automobiles and aircrafts to enhance fuel efficiencies. In electronics, better interconnects and thermal management components than copper with higher current- and heat-stabilities are required to enable device miniaturization with increased functionality. Our literature survey encouragingly indicates that Cu/CNT performances (electrical, thermal and mechanical) reported so far rival that of Cu, proving the material's viability as a Cu alternative. We identify two grand challenges to be solved for Cu/CNT to replace copper in real-life applications. The first grand challenge is to fabricate Cu/CNT with overall performances exceeding that of copper. To address this challenge, we propose research directions to fabricate Cu/CNT closer to ideal composites theoretically predicted to surpass Cu performances (i.e. those containing uniformly distributed Cu and individually aligned CNTs with beneficial CNT-Cu interactions). The second grand challenge is to industrialize and transfer Cu/CNT from lab bench to real-life use. Toward this, we identify and propose strategies to address market-dependent issues for niche/mainstream applications. The current best Cu/CNT performances already qualify for application in niche electronic device markets as high-end interconnects. However, mainstream Cu/CNT application as copper replacements in conventional electronics and in electrical/data wires are long-term goals, needing inexpensive mass-production by methods aligned with existing industrial practices. Mainstream electronics require cheap CNT template-making and electrodeposition procedures, while data/electrical cables require manufacture protocols based on co-electrodeposition or melt-processing. We note (with examples) that initiatives devoted to Cu/CNT manufacturing for both types of mainstream applications are underway. With sustained research on Cu/CNT and accelerating its real-life application, we expect the successful evolution of highly functional, efficient, and sustainable next-generation electrical and electronics systems.

8.
Sci Rep ; 8(1): 6701, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712939

RESUMEN

Secretory lysosomes are required for the specialised functions of various types of differentiated cells. In osteoclasts, the lysosomal proton pump V-ATPase (vacuolar-type ATPase) is targeted to the plasma membrane via secretory lysosomes and subsequently acidifies the extracellular compartment, providing optimal conditions for bone resorption. However, little is known about the mechanism underlying this trafficking of secretory lysosomes. Here, we demonstrate that the lysosome-specific a3 isoform of the V-ATPase a subunit plays an indispensable role in secretory lysosome trafficking, together with Rab7, a small GTPase involved in organelle trafficking. In osteoclasts lacking a3, lysosomes were not transported to the cell periphery, and Rab7 was not localised to lysosomes but diffused throughout the cytoplasm. Expression of dominant-negative (GDP-bound form) Rab7 inhibited lysosome trafficking in wild-type cells. Furthermore, a3 directly interacted with the GDP-bound forms of Rab7 and Rab27A. These findings reveal a novel role for the proton pump V-ATPase in secretory lysosome trafficking and an unexpected mechanistic link with Rab GTPases.


Asunto(s)
Lisosomas/genética , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Unión al GTP rab/genética , Proteínas rab27 de Unión a GTP/genética , Animales , Citoplasma/genética , Regulación Enzimológica de la Expresión Génica , Guanosina Difosfato/genética , Humanos , Lisosomas/enzimología , Ratones , Ratones Noqueados , Orgánulos/genética , Isoformas de Proteínas/genética , Transporte de Proteínas/genética , Proteínas de Unión a GTP rab7
9.
Biochem Biophys Res Commun ; 498(4): 837-841, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29530525

RESUMEN

Porphyromonas gingivalis is a well-known Gram-negative bacterium that causes periodontal disease. The bacterium metabolizes amino acids and peptides to obtain energy. An ion gradient across its plasma membrane is thought to be essential for nutrient import. However, it is unclear whether an ion-pumping ATPase responsible for the gradient is required for bacterial growth. Here, we report the inhibitory effect of protonophores and inhibitors of a proton-pumping ATPase on the growth of P. gingivalis. Among the compounds examined, curcumin and citreoviridin appreciably reduced the bacterial growth. Furthermore, these compounds inhibited the ATPase activity in the bacterial membrane, where the A-type proton-pumping ATPase (A-ATPase) is located. This study suggests that curcumin and citreoviridin inhibit the bacterial growth by inhibiting the A-ATPase in the P. gingivalis membrane.


Asunto(s)
Porphyromonas gingivalis/efectos de los fármacos , ATPasas de Translocación de Protón/antagonistas & inhibidores , Aurovertinas/farmacología , Proteínas Bacterianas , Membrana Celular/enzimología , Curcumina/farmacología , Enfermedades Periodontales/prevención & control , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/crecimiento & desarrollo , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/química
10.
Int J Biol Macromol ; 99: 615-621, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28246051

RESUMEN

The F1 sector of ATP synthase (FOF1) synthesizes or hydrolyses ATP via a rotational catalysis mechanism that couples chemical reaction with subunit rotation. Phytopolyphenols such as curcumin can inhibit bulk phase F1 ATPase activity by extending the catalytic dwell time during subunit rotation (Sekiya, M., Hisasaka, R., Iwamoto-Kihara, A., Futai, M., Nakanishi-Matsui, M., Biochem. Biophys. Res. Commun. 452 (2014) 940-944). Citreoviridin, a polyene α-pyrone mycotoxin isolated from Penicillium sp, also inhibits ATPase activity. Molecular docking and mutational analysis indicated that these compounds interact with a region near the ß-subunit Arg398 residue that lies at the interface with the α-subunit. Binding of these inhibitors lowered the rotation rate and increased the duration of the catalytic dwell synergistically with substitution of ß-subunit Ser174 to Phe (ßS174F), which rendered the enzyme defective for conformational transmission between ß-subunits of different catalytic stages. Furthermore, substitution of α-subunit Glu402 to Ala (αE402A) in the α/ß-interface also decreased the rotation rate by increasing the duration of the catalytic dwell. Interestingly, this mutation restored the catalytic dwell of the ßS174F variant to that of the wild-type enzyme. These results suggest that the α/ß-interface is involved in conformational changes of the ß-subunit during rotational catalysis.


Asunto(s)
Biocatálisis , Inhibidores Enzimáticos/farmacología , Mutación , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Animales , Aurovertinas/metabolismo , Aurovertinas/farmacología , Sitios de Unión , Bovinos , Curcumina/metabolismo , Curcumina/farmacología , Sinergismo Farmacológico , Inhibidores Enzimáticos/metabolismo , Escherichia coli/enzimología , Hidrólisis , Simulación del Acoplamiento Molecular , Mutación/efectos de los fármacos , Conformación Proteica , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/genética , Rotación
11.
Biochim Biophys Acta ; 1857(2): 129-140, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26589785

RESUMEN

ATP synthases (FoF1) are found ubiquitously in energy-transducing membranes of bacteria, mitochondria, and chloroplasts. These enzymes couple proton transport and ATP synthesis or hydrolysis through subunit rotation, which has been studied mainly by observing single molecules. In this review, we discuss the mechanism of rotational catalysis of ATP synthases, mainly that from Escherichia coli, emphasizing the high-speed and stochastic rotation including variable rates and an inhibited state. Single molecule studies combined with structural information of the bovine mitochondrial enzyme and mutational analysis have been informative as to an understanding of the catalytic site and the interaction between rotor and stator subunits. We discuss the similarity and difference in structure and inhibitory regulation of F1 from bovine and E. coli. Unlike the crystal structure of bovine F1 (α3ß3γ), that of E. coli contains a ε subunit, which is a known inhibitor of bacterial and chloroplast F1 ATPases. The carboxyl terminal domain of E. coli ε (εCTD) interacts with the catalytic and rotor subunits (ß and γ, respectively), and then inhibits rotation. The effects of phytopolyphenols on F1-ATPase are also discussed: one of them, piceatannol, lowered the rotational speed by affecting rotor/stator interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Polifenoles/química , Subunidades de Proteína/química , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/química , Animales , Biocatálisis , Dominio Catalítico , Bovinos , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Modelos Moleculares , Polifenoles/farmacología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Subunidades de Proteína/farmacología , ATPasas de Translocación de Protón/metabolismo , Rotación , Especificidad de la Especie , Termodinámica
12.
J Nanopart Res ; 16(9): 2595, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25285034

RESUMEN

After more than ten years of strategic investment research and development supported by government policies on science and technology, nanotechnology in Japan is making a transition from the knowledge creation stage of exploratory research to the stage of making the outcomes available for the benefit of society as a whole. Osaka University has been proactive in discussions about the relationship between nanotechnology and society as part of graduate and continuing education programs. These programs are intended to fulfill the social accountability obligation of scientists and corporations involved in R&D, and to deepen their understanding of the relationship between science and society. To meet those aims, the program has covered themes relating to overall public engagement relating to nanotechnology governance, such as risk management of nanomaterials, international standardization for nanotechnology, nanomeasurement, intellectual property management in an open innovation environment, and interactive communication with society. Nanotechnology is an emerging field of science and technology. This paper reports and comments on initiatives for public engagement on nanotechnology at Osaka University's Institute for NanoScience Design, which aims to create new technologies based on nanotechnology that can help realize a sustainable society.

13.
J Biol Chem ; 289(44): 30822-30831, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25228697

RESUMEN

Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058-42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer(108) in loop 2 and ϵTyr(114) in helix 2, which possibly interact with the ß and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits.


Asunto(s)
Proteínas de Escherichia coli/química , ATPasas de Translocación de Protón/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Biocatálisis , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Estructura Cuaternaria de Proteína , Subunidades de Proteína , ATPasas de Translocación de Protón/genética , Eliminación de Secuencia
14.
Biochem Biophys Res Commun ; 452(4): 940-4, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25230139

RESUMEN

ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277-286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective ß-γ subunit interactions (γMet23 to Lys) or ß conformational changes (ßSer174 to Phe). These results confirm that smooth interaction between each ß subunit and entire γ subunit in F1 is pertinent for rotational catalysis.


Asunto(s)
Curcumina/química , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Activación Enzimática , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
15.
Int J Biol Macromol ; 70: 241-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25010476

RESUMEN

Curcumin, a dietary phytopolyphenol isolated from a perennial herb (Curcuma longa), is a well-known compound effective for bacterial infections and tumors, and also as an antioxidant. In this study, we report the inhibitory effects of curcumin and its analogs on the Escherichia coli ATP synthase F1 sector. A structure-activity relationship study indicated the importance of 4'-hydroxy groups and a ß-diketone moiety for the inhibition. The 3'-demethoxy analog (DMC) inhibited F1 more strongly than curcumin did. Furthermore, these compounds inhibited E. coli growth through oxidative phosphorylation, consistent with their effects on ATPase activity. These results suggest that the two compounds affected bacterial growth through inhibition of ATP synthase. Derivatives including bis(arylmethylidene)acetones (C5 curcuminoids) exhibited only weak activity toward ATPase and bacterial growth.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/antagonistas & inhibidores , Curcumina/análogos & derivados , Curcumina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , ATPasas de Translocación de Protón Bacterianas/química , ATPasas de Translocación de Protón Bacterianas/metabolismo , Curcumina/química , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fosforilación Oxidativa/efectos de los fármacos , Relación Estructura-Actividad
16.
IUBMB Life ; 65(3): 247-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23441040

RESUMEN

In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas Motoras Moleculares/química , Subunidades de Proteína/química , ATPasas de Translocación de Protón/química , Protones , Adenosina Trifosfato/química , Biocatálisis , Dominio Catalítico , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Oro/química , Hidrólisis , Simulación de Dinámica Molecular , Proteínas Motoras Moleculares/metabolismo , Conformación Proteica , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Rotación , Termodinámica
17.
J Biol Chem ; 287(27): 22771-80, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22582396

RESUMEN

In observations of single molecule behavior under V(max) conditions with minimal load, the F(1) sector of the ATP synthase (F-ATPase) rotates through continuous cycles of catalytic dwells (∼0.2 ms) and 120° rotation steps (∼0.6 ms). We previously established that the rate-limiting transition step occurs during the catalytic dwell at the initiation of the 120° rotation. Here, we use the phytopolyphenol, piceatannol, which binds to a pocket formed by contributions from α and ß stator subunits and the carboxyl-terminal region of the rotor γ subunit. Piceatannol did not interfere with the movement through the 120° rotation step, but caused increased duration of the catalytic dwell. The duration time of the intrinsic inhibited state of F(1) also became significantly longer with piceatannol. All of the beads rotated at a lower rate in the presence of saturating piceatannol, indicating that the inhibitor stays bound throughout the rotational catalytic cycle. The Arrhenius plot of the temperature dependence of the reciprocal of the duration of the catalytic dwell (catalytic rate) indicated significantly increased activation energy of the rate-limiting step to trigger the 120° rotation. The activation energy was further increased by combination of piceatannol and substitution of γ subunit Met(23) with Lys, indicating that the inhibitor and the ß/γ interface mutation affect the same transition step, even though they perturb physically separated rotor-stator interactions.


Asunto(s)
Escherichia coli/enzimología , Polifenoles/metabolismo , ATPasas de Translocación de Protón/metabolismo , Estilbenos/metabolismo , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Catálisis , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutagénesis/fisiología , Polifenoles/química , Polifenoles/farmacología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Quercetina/metabolismo , Quercetina/farmacología , Estilbenos/farmacología , Temperatura , Termodinámica
18.
Biochim Biophys Acta ; 1817(10): 1711-21, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22459334

RESUMEN

We focus on the rotational catalysis of Escherichia coli F-ATPase (ATP synthase, F(O)F(1)). Using a probe with low viscous drag, we found stochastic fluctuation of the rotation rates, a flat energy pathway, and contribution of an inhibited state to the overall behavior of the enzyme. Mutational analyses revealed the importance of the interactions among ß and γ subunits and the ß subunit catalytic domain. We also discuss the V-ATPase, which has different physiological roles from the F-ATPase, but is structurally and mechanistically similar. We review the rotation, diversity of subunits, and the regulatory mechanism of reversible subunit dissociation/assembly of Saccharomyces cerevisiae and mammalian complexes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Dominio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Estructura Terciaria de Proteína , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
19.
Org Lett ; 13(17): 4624-7, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21827134

RESUMEN

Innate immunity is the front line of self-defense against microbial infection. After searching for natural substances that regulate innate immunity using an ex vivo Drosophila culture system, we identified a novel dimeric chromanone, gonytolide A, as an innate immune promoter from the fungus Gonytrichum sp. along with gonytolides B and C. Gonytolide A also increased TNF-α-stimulated production of IL-8 in human umbilical vein endothelial cells.


Asunto(s)
Inmunidad Innata/inmunología , Inmunosupresores/inmunología , Inmunosupresores/aislamiento & purificación , Hongos Mitospóricos/química , Animales , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Citocinas/biosíntesis , Citocinas/inmunología , Dimerización , Drosophila/inmunología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Humanos , Inmunosupresores/farmacología , Hongos Mitospóricos/inmunología , Modelos Moleculares , Estructura Molecular , Estereoisomerismo
20.
Int Immunopharmacol ; 11(10): 1497-503, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21616176

RESUMEN

Innate immunity is the front-line of self-defense against microbial infection. In mammals, innate immunity interacts with adaptive immunity and has a key role in the regulated immune response. From a pharmaceutical point of view, innate immunity is an ideal target for the development of immunoregulators. Therefore, we aimed to isolate and characterize a novel mammalian immunoregulator isolated from the thermophilic cellulotic fungus Talaromyces sp. 2'-(R)-hydroxy-C(24) phytoceramide (C(24)(2'OH)Phy) was isolated from Talaromyces sp. using a Drosophila ex vivo culture system. C(24)(2'OH)Phy suppressed the immune deficiency (IMD) pathway-dependent expression of antibacterial peptides in Drosophila, whereas it stimulated the production of chemokines in human cells. Structure activity relationship studies of C(24)(2'OH)Phy analogs revealed that both the 2'-(R)-hydroxylignoceroyl group and phytoceramide backbone are essential for the biologic activity of C(24)(2'OH)Phy. Microarray analysis revealed that C(24)(2'OH)Phy selectively activates the transcription of inflammatory response genes, including chemokines. Furthermore, a reporter gene assay and small interfering RNA analysis demonstrated that C(24)(2'OH)Phy stimulates chemokine production through cAMP response element-binding protein activation in human cells. C(24)(2'OH)Phy may be a lead immunostimulating compound in humans.


Asunto(s)
Ceramidas/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Endotelio Vascular/metabolismo , Factores Inmunológicos/farmacología , Talaromyces/inmunología , Animales , Línea Celular , Ceramidas/química , Ceramidas/aislamiento & purificación , Quimiocinas/genética , Quimiocinas/inmunología , Quimiocinas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/inmunología , Drosophila/inmunología , Drosophila/microbiología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Análisis por Micromatrices , Unión Proteica/genética , ARN Interferente Pequeño/genética , Relación Estructura-Actividad , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Activación Transcripcional/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...