Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 8(6): 9425-9441, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28031533

RESUMEN

Using the ability of poorly differentiated cells to natively internalize fragments of extracellular double-stranded DNA as a marker, we isolated a tumorigenic subpopulation present in Krebs-2 ascites that demonstrated the features of tumor-inducing cancer stem cells. Having combined TAMRA-labeled DNA probe and the power of RNA-seq technology, we identified a set of 168 genes specifically expressed in TAMRA-positive cells (tumor-initiating stem cells), these genes remaining silent in TAMRA-negative cancer cells. TAMRA+ cells displayed gene expression signatures characteristic of both stem cells and cancer cells. The observed expression differences between TAMRA+ and TAMRA- cells were validated by Real Time PCR. The results obtained corroborated the biological data that TAMRA+ murine Krebs-2 tumor cells are tumor-initiating stem cells. The approach developed can be applied to profile any poorly differentiated cell types that are capable of immanent internalization of double-stranded DNA.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Krebs 2/genética , Diferenciación Celular , Perfilación de la Expresión Génica/métodos , Transcriptoma , Elementos Alu , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Krebs 2/patología , ADN/genética , ADN/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Rodaminas/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal
2.
Genome Res ; 24(12): 2077-89, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25273068

RESUMEN

Multiple sequence alignments (MSAs) are a prerequisite for a wide variety of evolutionary analyses. Published assessments and benchmark data sets for protein and, to a lesser extent, global nucleotide MSAs are available, but less effort has been made to establish benchmarks in the more general problem of whole-genome alignment (WGA). Using the same model as the successful Assemblathon competitions, we organized a competitive evaluation in which teams submitted their alignments and then assessments were performed collectively after all the submissions were received. Three data sets were used: Two were simulated and based on primate and mammalian phylogenies, and one was comprised of 20 real fly genomes. In total, 35 submissions were assessed, submitted by 10 teams using 12 different alignment pipelines. We found agreement between independent simulation-based and statistical assessments, indicating that there are substantial accuracy differences between contemporary alignment tools. We saw considerable differences in the alignment quality of differently annotated regions and found that few tools aligned the duplications analyzed. We found that many tools worked well at shorter evolutionary distances, but fewer performed competitively at longer distances. We provide all data sets, submissions, and assessment programs for further study and provide, as a resource for future benchmarking, a convenient repository of code and data for reproducing the simulation assessments.


Asunto(s)
Genoma , Genómica/métodos , Alineación de Secuencia/métodos , Programas Informáticos , Animales , Biología Computacional/métodos , Simulación por Computador , Conjuntos de Datos como Asunto , Estudio de Asociación del Genoma Completo , Humanos , Mamíferos/genética , Filogenia , Reproducibilidad de los Resultados
3.
Genome Res ; 21(12): 2224-41, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21926179

RESUMEN

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/.


Asunto(s)
Genoma/fisiología , Genómica/métodos , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...