Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(17): 19613-19619, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708287

RESUMEN

Possibilities for controlling the release of pharmaceuticals from liposomal drug delivery systems can enhance their efficacy and reduce their side effects. Membrane-active peptides (MAPs) can be tailored to promote liposomal release when conjugated to lipid head groups using thiol-maleimide chemistry. However, the rapid oxidation of thiols hampers the optimization of such conjugation-dependent release strategies. Here, we demonstrate a de novo designed MAP modified with an enzyme-labile Cys-protection group (phenylacetamidomethyl (Phacm)) that prevents oxidation and facilitates in situ peptide lipidation. Before deprotection, the peptide lacks a defined secondary structure and does not interact with maleimide-functionalized vesicles. After deprotection of Cys using penicillin G acylase (PGA), the peptide adopts an α-helical conformation and triggers rapid release of vesicle content. Both the peptide and PGA concentrations significantly influence the conjugation process and, consequently, the release kinetics. At a PGA concentration of 5 µM the conjugation and release kinetics closely mirror those of fully reduced, unprotected peptides. We anticipate that these findings will enable further refinement of MAP conjugation and release processes, facilitating the development of sophisticated bioresponsive MAP-based liposomal drug delivery systems.

2.
Acta Biomater ; 178: 160-169, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382828

RESUMEN

High mammographic density, associated with increased tissue stiffness, is a strong risk factor for breast cancer per se. In postmenopausal women there is no differences in the occurrence of ductal carcinoma in situ (DCIS) depending on breast density. Preliminary data suggest that dense breast tissue is associated with a pro-inflammatory microenvironment including infiltrating monocytes. However, the underlying mechanism(s) remains largely unknown. A major roadblock to understanding this risk factor is the lack of relevant in vitro models. A biologically relevant 3D model with tunable stiffness was developed by cross-linking hyaluronic acid. Breast cancer cells were cultured with and without freshly isolated human monocytes. In a unique clinical setting, extracellular proteins were sampled using microdialysis in situ from women with various breast densities. We show that tissue stiffness resembling high mammographic density increases the attachment of monocytes to the cancer cells, increase the expression of adhesion molecules and epithelia-mesenchymal-transition proteins in estrogen receptor (ER) positive breast cancer. Increased tissue stiffness results in increased secretion of similar pro-tumorigenic proteins as those found in human dense breast tissue including inflammatory cytokines, proteases, and growth factors. ER negative breast cancer cells were mostly unaffected suggesting that diverse cancer cell phenotypes may respond differently to tissue stiffness. We introduce a biological relevant model with tunable stiffness that resembles the densities found in normal breast tissue in women. The model will be key for further mechanistic studies. Additionally, our data revealed several pro-tumorigenic pathways that may be exploited for prevention and therapy against breast cancer. STATEMENT OF SIGNIFICANCE: Women with mammographic high-density breasts have a 4-6-fold higher risk of breast cancer than low-density breasts. Biological mechanisms behind this increase are not fully understood and no preventive therapeutics are available. One major reason being a lack of suitable experimental models. Having such models available would greatly enhance the discovery of relevant targets for breast cancer prevention. We present a biologically relevant 3D-model for studies of human dense breasts, providing a platform for investigating both biophysical and biochemical properties that may affect cancer progression. This model will have a major scientific impact on studies for identification of novel targets for breast cancer prevention.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Densidad de la Mama , Mamografía , Monocitos/patología , Mama/diagnóstico por imagen , Microambiente Tumoral
3.
Biofabrication ; 16(2)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38128125

RESUMEN

In native tissue, remodeling of the pericellular space is essential for cellular activities and is mediated by tightly regulated proteases. Protease activity is dysregulated in many diseases, including many forms of cancer. Increased proteolytic activity is directly linked to tumor invasion into stroma, metastasis, and angiogenesis as well as all other hallmarks of cancer. Here we show a strategy for 3D bioprinting of breast cancer models using well-defined protease degradable hydrogels that can facilitate exploration of the multifaceted roles of proteolytic extracellular matrix remodeling in tumor progression. We designed a set of bicyclo[6.1.0]nonyne functionalized hyaluronan (HA)-based bioinks cross-linked by azide-modified poly(ethylene glycol) (PEG) or matrix metalloproteinase (MMP) degradable azide-functionalized peptides. Bioprinted structures combining PEG and peptide-based hydrogels were proteolytically degraded with spatial selectivity, leaving non-degradable features intact. Bioprinting of tumor-mimicking microenvironments using bioinks comprising human breast cancer cells (MCF-7) and fibroblast in hydrogels with different susceptibilities to proteolytic degradation shows that MCF-7 proliferation and spheroid size were significantly increased in protease degradable hydrogel compartments, but only in the presence of fibroblasts. In the absence of fibroblasts in the stromal compartment, cancer cell proliferation was reduced and did not differ between degradable and nondegradable hydrogels. The interactions between spatially separated fibroblasts and MCF-7 cells consequently resulted in protease-mediated remodeling of the bioprinted structures and a significant increase in cancer cell spheroid size, highlighting the close interplay between cancer cells and stromal cells in the tumor microenvironment and the influence of proteases in tumor progression.


Asunto(s)
Bioimpresión , Neoplasias de la Mama , Humanos , Femenino , Microambiente Tumoral , Azidas , Péptidos/química , Metaloproteinasas de la Matriz/metabolismo , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA