Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Biomedicines ; 12(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927370

RESUMEN

A relevant challenge for the treatment of patients with neoplasia is the development of resistance to chemo-, immune-, and radiotherapies. Although the causes of therapy resistance are poorly understood, evidence suggests it relies on compensatory mechanisms that cells develop to replace specific intracellular signaling that should be inactive after pharmacological inhibition. One such mechanism involves integrins, membrane receptors that connect cells to the extracellular matrix and have a crucial role in cell migration. The blockage of one specific type of integrin is frequently compensated by the overexpression of another integrin dimer, generally supporting cell adhesion and migration. In particular, integrin αvß3 is a key receptor involved in tumor resistance to treatments with tyrosine kinase inhibitors, immune checkpoint inhibitors, and radiotherapy; however, the specific inhibition of the αvß3 integrin is not enough to avoid tumor relapse. Here, we review the role of integrin αvß3 in tumor resistance to therapy and the mechanisms that have been proposed thus far. Despite our focus on the αvß3 integrin, it is important to note that other integrins have also been implicated in drug resistance and that the collaborative action between these receptors should not be neglected.

2.
Transl Cancer Res ; 13(3): 1554-1566, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38617520

RESUMEN

Background: Breast cancer (BC/BRCA) is the most common carcinoma in women. The average 5-year survival rate of BC patients with stage IV disease is 26%. A considerable proportion of patients still do not receive effective therapy. It is an unmet need to identify novel biomarkers for BC patients. Herein, we evaluated whether the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) status is associated with the clinical outcomes of BC, based on data from The Cancer Genome Atlas (TCGA). Methods: Clinical and transcriptome data of BC patients were obtained from TCGA dataset, and prognostic genes in BC patients were identified, as well as the PD-1/PD-L1 pathway mainly associating with the BC patients. Following the execution of the consensus clustering algorithm, BC patients were segregated into two clusters, and subsequent investigation of the potential mechanisms between them was carried out. A comparison of ferroptosis and N6-methyladenosine (m6A) was conducted between the two groups with the greatest difference in prognosis. Based on least absolute shrinkage and selection operator (LASSO) analysis, a signature associated with the PD-1/PD-L1 pathway was developed, and the prognosis outcome and the predictive accuracy of the signature model were further assessed. Results: Prognostic genes in BC patients were studied using TCGA data and it was found that the PD-1/PD-L1 pathway was most associated with the BC patients. Then, a low-risk (C1) group and a high-risk (C2) group of BC patients were constructed based on a PD-1/PD-L1 pathway-related signature. The functional analyses suggested that the underlying mechanisms between these groups were mainly associated with immune-related pathways. We found that ferroptosis and m6A were significantly different between the two groups. A PD-1/PD-L1 pathway-related gene signature was further developed to predict survival of BC patients, including 7 genes [mitogen-activated protein kinase kinase 6 (MAP2K6), NF-kappa-B inhibitor alpha (NFKBIA), NFKB Inhibitor Epsilon (NFKBIE), Interferon gamma (IFNG), Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), IkappaB kinase (CHUK), and Casein kinase 2 alpha 3 gene (CSNK2A3)]. The receiver operating characteristic (ROC) curves were analyzed to further assess the prognostic values of these 7 genes. The 1-, 3-, and 5-year values of the areas under the curve (AUCs) for overall survival were 0.651, 0.658, and 0.653 in this seven gene signature model, respectively. Conclusions: PD-1/PD-L1 pathway-related subtypes of BC were identified, which were closely associated with the immune microenvironment, the ferroptosis status, and m6A in BC patients. The gene signature involved in the PD-1/PD-L1 pathway might help to make a distinction and predict prognosis in BC patients.

3.
Biochem Biophys Rep ; 38: 101686, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38524278

RESUMEN

Breast cancer is a relevant cause of mortality in women and its triple-negative subtype (TNBC) is usually associated with poor prognosis. During tumor progression to metastasis, angiogenesis is triggered by the sprouting of endothelial cells from pre-existing vessels by a dynamic chain of events including VE-cadherin downregulation, actin protrusion, and integrin-mediated adhesion, allowing for migration and proliferation. The binding of tumoral and tumor-associated stromal cells with the extracellular matrix through integrins mediates angiogenic processes and certain integrin subtypes, such as the αvß3 integrin, are upregulated in hypoxic TNBC models. Integrin αvß3 inhibition by the high-affinity binding disintegrin DisBa-01 was previously demonstrated to induce anti-tumoral and anti-angiogenic responses in traditional 2D cell assays. Here, we investigate the effects of integrin αvß3 blockage in endothelial and TNBC cells by DisBa-01 in 3D cultures under two oxygen conditions (1% and 20%). 3D cultures created using non-adhesive micromolds with Matrigel were submitted to migration assay in Boyden chambers and fluorescence analysis. DisBa-01 inhibited cell migration in normoxia and hypoxia in both MDA-MB-231 and HUVEC spheroids. Protein levels of integrin αvß3 were overexpressed in HUVEC spheroids compared to MDA-MB-231 spheroids. In HUVEC 3D cultures, sprouting assays in collagen type I were decreased in normoxia upon DisBa-01 treatment, and VE-cadherin levels were diminished in HUVEC spheroids in hypoxia and upon DisBa-01 treatment. In conclusion, the blockage of integrin αvß3 by DisBa-01 inhibits cell migration in 3D culture and interferes with tumor-derived responses in different oxygen settings, implicating its crucial role in angiogenesis and tumor progression.

4.
Biomater Biosyst ; 13: 100086, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38213985

RESUMEN

The fabrication of customized implants by additive manufacturing has allowed continued development of the personalized medicine field. Herein, a 3D-printed bioabsorbable poly (lactic acid) (PLA)- ß-tricalcium phosphate (TCP) (10 wt %) composite has been modified with CeO2 nanoparticles (CeNPs) (1, 5 and 10 wt %) for bone repair. The filaments were prepared by melt extrusion and used to print porous scaffolds. The nanocomposite scaffolds possessed precise structure with fine print resolution, a homogenous distribution of TCP and CeNP components, and mechanical properties appropriate for bone tissue engineering applications. Cell proliferation assays using osteoblast cultures confirmed the cytocompatibility of the composites. In addition, the presence of CeNPs enhanced the proliferation and differentiation of mesenchymal stem cells; thereby, increasing alkaline phosphatase (ALP) activity, calcium deposition and bone-related gene expression. Results from this study have shown that the 3D printed PLA-TCP-10%CeO2 composite scaffold could be used as an alternative polymeric implant for bone tissue engineering applications: avoiding additional/revision surgeries and accelerating the regenerative process.

5.
Tissue Eng Regen Med ; 21(2): 223-242, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37856070

RESUMEN

BACKGROUND: Poly (lactic acid) (PLA) is a biodegradable polyester that has been exploited for a variety of biomedical applications, including tissue engineering. The incorporation of ß-tricalcium phosphate (TCP) into PLA has imparted bioactivity to the polymeric matrix. METHODS: We have modified a 90%PLA-10%TCP composite with SiO2 and MgO (1, 5 and 10 wt%), separately, to further enhance the material bioactivity. Filaments were prepared by extrusion, and scaffolds were fabricated using 3D printing technology associated with fused filament fabrication. RESULTS: The PLA-TCP-SiO2 composites presented similar structural, thermal, and rheological properties to control PLA and PLA-TCP. In contrast, the PLA-TCP-MgO composites displayed absence of crystallinity, lower polymeric molecular weight, accelerated degradation ratio, and decreased viscosity within the 3D printing shear rate range. SiO2 and MgO particles were homogeneously dispersed within the PLA and their incorporation increased the roughness and protein adsorption of the scaffold, compared to a PLA-TCP scaffold. This favorable surface modification promoted cell proliferation, suggesting that SiO2 and MgO may have potential for enhancing the bio-integration of scaffolds in tissue engineering applications. However, high loads of MgO accelerated the polymeric degradation, leading to an acid environment that imparted the composite biocompatibility. The presence of SiO2 stimulated mesenchymal stem cells differentiation towards osteoblast; enhancing extracellular matrix mineralization, alkaline phosphatase (ALP) activity, and bone-related genes expression. CONCLUSION: The PLA-10%TCP-10%SiO2 composite presented the most promising results, especially for bone tissue regeneration, due to its intense osteogenic behavior. PLA-10%TCP-10%SiO2 could be used as an alternative implant for bone tissue engineering application.


Asunto(s)
Fosfatos de Calcio , Óxido de Magnesio , Andamios del Tejido , Óxido de Magnesio/farmacología , Óxido de Magnesio/química , Andamios del Tejido/química , Dióxido de Silicio , Ensayo de Materiales , Poliésteres , Polímeros/química , Ácido Láctico/química , Impresión Tridimensional
6.
Cell Stress Chaperones ; 28(6): 1001-1012, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38001371

RESUMEN

Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas , Humanos , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo
7.
Biomed Phys Eng Express ; 9(4)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37216927

RESUMEN

This work aimed to assess the influence of different structured substrates with hydrophilic and hydrophobic properties on micro and nano topographies developed on titanium alloys over pre-osteoblastic cell behavior. Nano topography influences small dimension levels of cell morphology by inducing filopodia formation in cell membranes, irrespectively to the wettability behavior of the surface. Therefore, micro and nanostructured surfaces of titanium-based samples using different techniques of surface modification processing, such as chemical treatments, micro-arc anodic oxidation (MAO), and MAO combined to laser irradiation were developed. Isotropic and anisotropic texture morphologies, wettability, topological parameters and compositional alterations were measured after the surface treatments. Finally, cell viability, adhesion and morphological responses were assessed to investigate the influence of distinct topologies on osteoblastic cells aiming to encounter the conditions to better promote mineralization events. Our study demonstrated that the hydrophilic behavior improves cell adhesion, amplified when effective surface area increases. Surfaces presenting nano topography have a direct influence on cell morphology and play a key role for filopodia formation.


Asunto(s)
Aleaciones , Titanio , Propiedades de Superficie , Titanio/química , Titanio/farmacología , Comunicación Celular , Monoaminooxidasa
8.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36831558

RESUMEN

Human epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis. The aim of this study was to understand the mechanisms of resistance to TKI-induced ferroptosis and identify novel approaches to overcome treatment resistance. We used mouse and human HER2-positive models of acquired TKI resistance to demonstrate an intimate link between the resistance to TKIs and to ferroptosis and present the first evidence that the cell adhesion receptor αvß3 integrin is a critical mediator of resistance to TKI-induced ferroptosis. Our findings indicate that αvß3 integrin-mediated resistance is associated with the re-wiring of the iron/antioxidant metabolism and persistent activation of AKT signalling. Moreover, using gene manipulation approaches and pharmacological inhibitors, we show that this "αvß3 integrin addiction" can be targeted to reverse TKI resistance. Collectively, these findings provide critical insights into new therapeutic strategies to improve the treatment of advanced HER2-positive breast cancer patients.

9.
Life Sci ; 317: 121417, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690246

RESUMEN

AIMS: We evaluated the effects of resistance training (RT) on bone properties, morphology, and bone extracellular matrix (ECM) remodeling markers in an ovariectomy (OVX) rat model. MAIN METHODS: Thirty-six female rats were divided into four groups: sham sedentary, OVX sedentary, sham RT, and OVX RT. Rats performed RT for ten weeks, during which they climbed a ladder with progressive loads attached to the tail. Tibias were stored for dual-energy X-ray densitometry (DXA), micro-computed tomography (micro-CT), and biomechanical, biophysical, and biochemical analysis. Femurs were stored for morphological, gene expression, and gelatin zymography analysis. KEY FINDINGS: OVX decreased bone mineral density, stiffness, maximal load, and calcium content, which was reversed by RT. The trabecular number, connectivity, and MMP-13 gene expression decreased in OVX groups. Furthermore, OVX increased run-related transcription factor-2 (RUNX-2) and osteoprotegerin (OPG) gene expression, and increased the number of adipocytes in bone marrow and MMP-2 activity. SIGNIFICANCE: RT was efficient in preventing or reversing changes in bone biomechanical properties in OVX groups, improving fracture load and resilience, which is relevant to prevent fractures. On the other hand, RT did not decrease the number of bone adipocytes in the OVX-RT group. However, RT was efficient for increasing trabecular thickness and cortical bone volume, which improved bone resistance. Our findings provide further insights into the mechanisms involved in the role of RT in OVX damage protection.


Asunto(s)
Entrenamiento de Fuerza , Ratas , Femenino , Animales , Humanos , Microtomografía por Rayos X , Huesos , Densidad Ósea , Modelos Animales , Estrógenos/farmacología , Ovariectomía
10.
Transl Cancer Res ; 12(12): 3703-3717, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193000

RESUMEN

Background: Chemotherapy is one of the common treatments for breast cancer. The induction of cancer stem cells (CSCs) is an important reason for chemotherapy failure and breast cancer recurrence. Astragaloside IV (ASIV) is one of the effective components of the traditional Chinese medicine (TCM) Astragalus membranaceus, which can improve the sensitivity of various tumors to chemotherapy drugs. Here, we explored the sensitization effect of ASIV to chemotherapy drug paclitaxel (PTX) in breast cancer from the perspective of CSCs. Methods: The study included both in vitro and in vivo experiments. CSCs from the breast cancer cell line MCF7 with stem cell characteristics were successfully induced in vitro. Cell viability and proliferation were detected using the Cell Counting Kit-8 (CCK-8) and colony formation assays, and flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) methods were performed to detect cell apoptosis. Stemness-related protein expression was determined by western blotting (WB) and immunohistochemistry (IHC). Body weight, histopathology, and visceral organ damage of mice were used to monitor drug toxicity. Results: The expression of stemness markers including Sox2, Nanog, and ALDHA1 was stronger in MCF7-CSCs than in MCF7. PTX treatment inhibited the proliferation of tumor cells by promoting cell apoptosis, whereas the stemness of breast cancer stem cells (BCSCs) resisted the effects of PTX. ASIV decreased the stemness of BCSCs, increased the sensitivity of BCSCs to PTX, and synergistically promoted PTX-induced apoptosis of breast cancer cells. Our results showed that the total cell apoptosis rate increased by about 25% after adding ASIV compared with BCSCs treated with PTX alone. The in vivo experiments demonstrated that ASIV enhanced the ability of PTX to inhibit the growth of breast cancer. WB and IHC showed that ASIV reduced the stemness of CSCs. Conclusions: In this study, the resistance of breast cancer to PTX was attributed to the existence of CSCs; ASIV weakened the resistance of MCF7-CSCs to PTX by significantly attenuating the hallmarks of breast cancer stemness and improved the efficacy of PTX.

11.
Sci Rep ; 12(1): 21314, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494472

RESUMEN

The aging process causes changes at all organic levels. Although metabolism, cardiac autonomic modulation (CAM), and cardiorespiratory fitness (CRF) are widely studied as a function of age, they are mainly studied in isolation, thus making it difficult to perceive their concomitant variations. This study aimed to investigate the integrated changes that occur in the metabolome, CAM, and CRF throughout aging in apparently healthy individuals. The subjects (n = 118) were divided into five groups according to age (20-29, 30-39, 40-49, 50-59, and 60-70 years old) and underwent blood collection, autonomic assessment, and a cardiopulmonary exercise test for metabolomics analysis using mass spectrometry and nuclear magnetic resonance, cardiac autonomic modulation analysis, and CRF by peak oxygen consumption analysis, respectively. The Tukey's post hoc and effect size with confidence interval were used for variables with a significant one-way ANOVA effect (P < 0.01). The main changes were in the oldest age group, where the CRF, valine, leucine, isoleucine, 3-hydroxyisobutyrate, and CAM reduced and hippuric acid increased. The results suggest significant changes in the metabolome, CAM, and CRF after the age of sixty as a consequence of aging impairments, but with some changes in the metabolic profile that may be favorable to mitigate the aging deleterious effects.


Asunto(s)
Capacidad Cardiovascular , Humanos , Adulto Joven , Adulto , Sistema Nervioso Autónomo , Prueba de Esfuerzo/métodos , Estado de Salud , Metaboloma
13.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293503

RESUMEN

Hypoxia, a condition of low oxygenation frequently found in triple-negative breast tumors (TNBC), promotes extracellular vesicle (EV) secretion and favors cell invasion, a complex process in which cell morphology is altered, dynamic focal adhesion spots are created, and ECM is remodeled. Here, we investigated the invasive properties triggered by TNBC-derived hypoxic small EV (SEVh) in vitro in cells cultured under hypoxic (1% O2) and normoxic (20% O2) conditions, using phenotypical and proteomic approaches. SEVh characterization demonstrated increased protein abundance and diversity over normoxic SEV (SEVn), with enrichment in pro-invasive pathways. In normoxic cells, SEVh promotes invasive behavior through pro-migratory morphology, invadopodia development, ECM degradation, and matrix metalloprotease (MMP) secretion. The proteome profiling of 20% O2-cultured cells exposed to SEVh determined enrichment in metabolic processes and cell cycles, modulating cell health to escape apoptotic pathways. In hypoxia, SEVh was responsible for proteolytic and catabolic pathway inducement, interfering with integrin availability and gelatinase expression. Overall, our results demonstrate the importance of hypoxic signaling via SEV in tumors for the early establishment of metastasis.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Proliferación Celular , Proteómica , Proteoma , Vesículas Extracelulares/metabolismo , Hipoxia , Integrinas , Oxígeno , Gelatinasas , Metaloproteasas , Línea Celular Tumoral
14.
N Biotechnol ; 72: 80-88, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36272546

RESUMEN

3-Hydroxypropionic acid (3-HP) production from renewable feedstocks is of great interest in efforts to develop greener processes for obtaining this chemical platform. Here we report an engineered E. coli strain for 3-HP production through the ß-alanine pathway. To obtain a new strain capable of producing 3-HP, the pathway was established by overexpressing the enzymes pyruvate aminotransferase, 3-hydroxyacid dehydrogenase, and L-aspartate-1-decarboxylase. Further increase of the 3-HP titer was achieved using evolutionary optimizations of a genome-scale metabolic model of E. coli containing the adopted pathway. From these optimizations, three non-intuitive targets for in vivo assessment were identified: L-alanine aminotransferase and alanine racemase overexpression, and L-valine transaminase knock-out. The implementation of these targets in the production strain resulted in a 40% increase in 3-HP titer. The strain was further engineered to overexpress phosphoenolpyruvate carboxylase, reaching 0.79 ± 0.02 g/L of 3-HP when grown using glucose. Surprisingly, this strain produced 63% more of the desired product when grown using a mixture of glucose and xylose (1:1, C-mol), and gene expression analysis showed that the cellular adjustment to consume xylose had a positive impact on 3-HP accumulation. Fed-batch culture with xylose feeding led to a final titer of 29.1 g/L. These results reinforce the value of computational methods in strain engineering, enabling the design of more efficient strategies to be assessed. Moreover, higher production of 3-HP under a sugar mixture condition points towards the development of bioprocesses based on renewable resources, such as hemicellulose hydrolysates.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Ácido Láctico , Xilosa/metabolismo , Glucosa/metabolismo
15.
Biomed Mater ; 17(5)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35948004

RESUMEN

Several techniques, such as additive manufacturing, have been used for the manufacture of polymer-ceramic composite scaffolds for bone tissue engineering. A new extruder head recently developed for improving the manufacturing process is an experimental 3D printer Fab@CTI that enables the use of ceramic powders in the processing of composite materials or polymer blends. Still, the manufacturing process needs improvement to promote the dispersion of ceramic particles in the polymer matrix. This article addresses the manufacture of scaffolds by 3D printing from mixtures of poly(ϵ-caprolactone) (PCL) and a glass powder of same composition of 45S5Bioglass®, labeled as synthesized bioglass (SBG), according to two different methods that investigated the efficiency of the new extruder head. The first one is a single extrusion process in a Fab@CTI 3D printer, and the other consists in the pre-processing of the PCL-SBG mixture in a mono-screw extruder with a Maddock® element, followed by direct extrusion in the experimental Fab@CTI 3D printer. The morphological characterization of the extruded samples by scanning electron microscope showed an architecture of 0°/90° interconnected struts and suitable porosity for bone tissue engineering applications. Scaffolds fabricated by two methods shows compressive modulus ranging from 54.4 ± 14.2 to 155.9 ± 20.4 MPa, results that are compatible to use in bone tissue engineering. Cytotoxicity assays showed non-toxic effects and viability forin vitroMG-63 cell proliferation. Alizarin Red staining test showed calcium deposition in all scaffolds, which suggests PCL/SBG composites promising candidates for use in bone tissue engineering. Results of cell morphology suggest more cell growth and adhesion for scaffolds fabricated using the pre-processing in a mono-screw extruder.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Cerámica , Poliésteres , Polímeros , Porosidad , Impresión Tridimensional , Ingeniería de Tejidos/métodos
16.
Eur J Pharm Biopharm ; 176: 168-179, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643369

RESUMEN

Extracellular vesicles (EVs) and cell membrane nanoghosts are excellent coatings for nanomaterials, providing enhanced delivery in the target sites and evasion of the immune system. These cell-derived coatings allow the exploration of the delivery properties of the nanoparticles without stimulation of the immune system. Despite the advances reported on the use of EVs and cell-membrane coatings for nanomedicine applications, there are no standards to compare the benefits and main differences between these technologies. Here we investigated macrophage-derived EVs and cell membranes-coated gold nanorods and compared both systems in terms of target delivery in cancer and stromal cells. Our results reveal a higher tendency of EV-coated nanorods to interact with macrophages yet both EV and cell membrane-coated nanorods were internalized in the metastatic breast cancer cells. The main differences between these nanoparticles are related to the presence or absence of CD47 in the coating material, not usually addressed in EVs characterization. Our findings highlight important delivery differences exhibited by EVs- or cell membranes- coated nanorods which understanding may be important to the design and development of theragnostic nanomaterials using these coatings for target delivery.


Asunto(s)
Vesículas Extracelulares , Nanotubos , Membrana Celular , Vesículas Extracelulares/metabolismo , Oro/metabolismo , Medicina de Precisión
17.
Metabolites ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629906

RESUMEN

A deficit of estrogen is associated with energy substrate imbalance, raising the risk of metabolic diseases. Physical training (PT) is a potent metabolic regulator through oxidation and storage of substrates transported by GLUT4 and FAT CD36 in skeletal muscle. However, little is known about the effects of PT on these carriers in an estrogen-deficit scenario. Thus, the aim of this study was to determine the influence of 12 weeks of PT on metabolic variables and GLUT4 and FAT CD36 expression in the skeletal muscle of animals energetically impaired by ovariectomy (OVX). The trained animals swam 30 min/day, 5 days/week, at 80% of the critical load intensity. Spontaneous physical activity was measured biweekly. After training, FAT CD36 and GLUT4 expressions were quantified by immunofluorescence in the soleus, as well as muscular glycogen and triglyceride of the soleus, gluteus maximus and gastrocnemius. OVX significantly reduced FAT CD36, GLUT4 and spontaneous physical activity (p < 0.01), while PT significantly increased FAT CD36, GLUT4 and spontaneous physical activity (p < 0.01). PT increased soleus glycogen, and OVX decreased muscular triglyceride of gluteus maximus. Therefore, OVX can cause energy disarray through reduction in GLUT4 and FAT CD36 and their muscle substrates and PT prevented these metabolic consequences, masking ovarian estrogen's absence.

18.
Toxicon ; 210: 1-10, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35149005

RESUMEN

Triple-negative breast cancer has an aggressive clinical course and its treatment has been challenging due to high metastatic risk. Molecular targets have been sought to provide better strategies for this type of cancer. Integrins are cell adhesion receptors involved in tumor progression and α2ß1 integrin, a collagen receptor, has a key role in breast metastasis. Disintegrins, a family of proteins from snake venoms, selectively block the function of integrin receptors. Alternagin-C (ALT-C), a disintegrin-like protein purified from Bothrops alternatus venom, binds to α2ß1 integrin, attenuating inflammation and angiogenesis, and decreasing metalloprotease levels in the tumor microenvironment, which suggests anti-metastatic effects. However, its mechanisms of action in metastatic tumor cells have not been fully explored. Here, we investigated ALT-C effects in a triple-negative breast cancer cell line (MDA-MB-231) to elucidate how α2ß1 integrin affects cellular adhesion, migration and gene expression related to metastasis. We observed that ALT-C attenuated cell adhesion of MDA-MB-231 cells to collagen I. α2 integrin subunit silencing in MDA-MB-231 cells did not inhibit cell adhesion and migration to collagen I, indicating that other integrins play a crucial role in cell motility for this cell line. ALT-C also stimulated the metastasis suppressor 1 (MTSS1) expression and decreased metalloproteases MMP9 and MMP2. Therefore, we suggest that ALT-C contributes to impair metastasis, preventing extracellular matrix degradation and tumor attachment to collagen I, increasing MTSS1. This study is the first to elucidate the anti-metastatic mechanism involving a disintegrin-like protein from snake venom targeting α2ß1 integrin and stimulating a metastasis suppressor.


Asunto(s)
Desintegrinas , Integrina alfa2beta1 , Proteínas de Microfilamentos , Proteínas de Neoplasias , Neoplasias de la Mama Triple Negativas , Adhesión Celular/efectos de los fármacos , Colágeno/metabolismo , Desintegrinas/farmacología , Humanos , Integrina alfa2beta1/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ligandos , Proteínas de Microfilamentos/biosíntesis , Proteínas de Neoplasias/biosíntesis , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral
19.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163668

RESUMEN

Breast cancer is characterized by a hypoxic microenvironment inside the tumor mass, contributing to cell metastatic behavior. Hypoxia induces the expression of hypoxia-inducible factor (HIF-1α), a transcription factor for genes involved in angiogenesis and metastatic behavior, including the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and integrins. Integrin receptors play a key role in cell adhesion and migration, being considered targets for metastasis prevention. We investigated the migratory behavior of hypoxia-cultured triple-negative breast cancer cells (TNBC) and endothelial cells (HUVEC) upon αvß3 integrin blocking with DisBa-01, an RGD disintegrin with high affinity to this integrin. Boyden chamber, HUVEC transmigration, and wound healing assays in the presence of DisBa-01 were performed in hypoxic conditions. DisBa-01 produced similar effects in the two oxygen conditions in the Boyden chamber and transmigration assays. In the wound healing assay, hypoxia abolished DisBa-01's inhibitory effect on cell motility and decreased the MMP-9 activity of conditioned media. These results indicate that αvß3 integrin function in cell motility depends on the assay and oxygen levels, and higher inhibitor concentrations may be necessary to achieve the same inhibitory effect as in normoxia. These versatile responses add more complexity to the role of the αvß3 integrin during tumor progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Endoteliales/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Integrina alfaVbeta3/metabolismo , Hipoxia Tumoral , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Venenos de Crotálidos/farmacología , Medios de Cultivo Condicionados/farmacología , Desintegrinas/farmacología , Células Endoteliales/patología , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Metaloproteinasas de la Matriz/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Oxígeno , Subunidades de Proteína/metabolismo , Hipoxia Tumoral/efectos de los fármacos
20.
Expert Opin Drug Discov ; 17(4): 365-376, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35179448

RESUMEN

INTRODUCTION: Triple-negative breast cancer (TNBC) is of great concern due to its aggressiveness and lack of targeted therapy. For these reasons, TNBC is one of the main causes of death in women, mainly due to metastases. Tumor dissemination has highlighted a set of possible targets, with extensive research into new single-target drugs, in addition to drug repurposing strategies, being undertaken to discover new classes of potential inhibitors of metastasis. AREAS COVERED: The authors here describe the main proposed targets and the bases of their pharmacological inhibition with different chemical compounds. The authors also discuss the state-of-the-art from the latest clinical trials and highlight other potential targets for metastatic TNBC. EXPERT OPINION: In the last decade, oncology research has changed its focus from primary tumors to moving tumor cells, their products, and to the secondary tumor and its surroundings, for the purpose of finding targets to treat metastasis. Consequently, our comprehension of the complexity of the metastatic process has increased drastically, with, furthermore, the discovery of new potential targets. Although promising, the wide range of strategies is still not effective to suppress TNBC metastasis in terms of increasing patient survival or decreasing the number of metastases. Treating or preventing metastasis continues to be a great challenge.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Reposicionamiento de Medicamentos , Femenino , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA