Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 12(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35448493

RESUMEN

Hyperlipidemia (hypertriglyceridemia, hypercholesterolemia) is a common finding in human and veterinary patients with endocrinopathies (e.g., hypothyroidism and hypercortisolism (Cushing's syndrome; CS)). Despite emerging use of lipidomics technology in medicine, the lipid profiles of these endocrinopathies have not been evaluated and characterized in dogs. The aim of this study was to compare the serum lipidomes of dogs with naturally occurring CS or hypothyroidism with those of healthy dogs. Serum samples from 39 dogs with CS, 45 dogs with hypothyroidism, and 10 healthy beagle dogs were analyzed using a targeted lipidomics approach with liquid chromatography-mass spectrometry. There were significant differences between the lipidomes of dogs with CS, hypothyroidism, and the healthy dogs. The most significant changes were found in the lysophosphatidylcholines, lysophosphatidylethanolamines, lysophosphatidylinositols, phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerols, ceramides, and sphingosine 1-phosphates. Lipid alterations were especially pronounced in dogs with hypothyroidism. Several changes suggested a more atherogenic lipid profile in dogs with HT than in dogs with CS. In this study, we found so far unknown effects of naturally occurring hypothyroidism and CS on lipid metabolism in dogs. Our findings provide starting points to further examine differences in occurrence of atherosclerotic lesion formation between the two diseases.

2.
J Inherit Metab Dis ; 43(5): 1131-1142, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32233035

RESUMEN

Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.


Asunto(s)
Insuficiencia Suprarrenal/tratamiento farmacológico , Aldehído-Liasas/metabolismo , Suplementos Dietéticos , Linfopenia/tratamiento farmacológico , Nefrosis/tratamiento farmacológico , Vitamina B 6/administración & dosificación , Insuficiencia Suprarrenal/genética , Aldehído-Liasas/química , Aldehído-Liasas/genética , Biomarcadores/metabolismo , Fibroblastos/efectos de los fármacos , Humanos , Linfopenia/genética , Mutación , Nefrosis/genética , Fosfatos , Síndrome
3.
Artículo en Inglés | MEDLINE | ID: mdl-29530849

RESUMEN

Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the Plasmodium falciparum kelch-13 (Pfk13) propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quiescence upon DHA exposure and resume growth in its absence. These quiescent rings are referred to as dormant rings or DHA-pretreated rings (here called dormant rings). The imidazolopiperazines (IPZ) are a novel class of antimalarial drugs that have demonstrated efficacy in early clinical trials. Here, we characterized the stage of action of the IPZ GNF179 and evaluated its activity against rings and dormant rings in wild-type and ART-resistant parasites. Unlike DHA, GNF179 does not induce dormancy. We show that GNF179 is more rapidly cidal against schizonts than against ring and trophozoite stages. However, with 12 h of exposure, the compound effectively kills rings and dormant rings of both susceptible and ART-resistant parasites within 72 h. We further demonstrate that in combination with ART, GNF179 effectively prevents recrudescence of dormant rings, including those bearing pfk13 propeller mutations.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Imidazoles/farmacología , Piperazinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esquizontes/efectos de los fármacos , Esquizontes/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/metabolismo
4.
ACS Infect Dis ; 4(4): 635-645, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29341586

RESUMEN

Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Cryptosporidium parvum/efectos de los fármacos , Cryptosporidium parvum/crecimiento & desarrollo , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/parasitología , Antiprotozoarios/farmacología , Línea Celular , Humanos
5.
PLoS One ; 8(12): e81414, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349065

RESUMEN

Next-generation sequencing (NGS) technologies permit the rapid production of vast amounts of data at low cost. Economical data storage and transmission hence becomes an increasingly important challenge for NGS experiments. In this paper, we introduce a new non-reference based read sequence compression tool called SRComp. It works by first employing a fast string-sorting algorithm called burstsort to sort read sequences in lexicographical order and then Elias omega-based integer coding to encode the sorted read sequences. SRComp has been benchmarked on four large NGS datasets, where experimental results show that it can run 5-35 times faster than current state-of-the-art read sequence compression tools such as BEETL and SCALCE, while retaining comparable compression efficiency for large collections of short read sequences. SRComp is a read sequence compression tool that is particularly valuable in certain applications where compression time is of major concern.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Algoritmos , Compresión de Datos/métodos , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...