Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 14(1): 3307, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332252

RESUMEN

Eliminating conventional pulsed B0-gradient coils for magnetic resonance imaging (MRI) can significantly reduce the cost of and increase access to these devices. Phase shifts induced by the Bloch-Siegert shift effect have been proposed as a means for gradient-free, RF spatial encoding for low-field MR imaging. However, nonlinear phasor patterns like those generated from loop coils have not been systematically studied in the context of 2D spatial encoding. This work presents an optimization algorithm to select an efficient encoding trajectory among the nonlinear patterns achievable with a given hardware setup. Performance of encoding trajectories or projections was evaluated through simulated and experimental image reconstructions. Results show that the encodings schemes designed by this algorithm provide more efficient spatial encoding than comparison encoding sets, and the method produces images with the predicted spatial resolution and minimal artifacts. Overall, the work demonstrates the feasibility of performing 2D gradient-free, low-field imaging using the Bloch-Siegert shift which is an important step towards creating low-cost, point-of-care MR systems.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Artefactos , Fantasmas de Imagen
2.
Annu Rev Biomed Eng ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38211326

RESUMEN

Low-field magnetic resonance imaging (MRI) has recently experienced a renaissance that is largely attributable to the numerous technological advancements made in MRI, including optimized pulse sequences, parallel receive and compressed sensing, improved calibrations and reconstruction algorithms, and the adoption of machine learning for image postprocessing. This new attention on low-field MRI originates from a lack of accessibility to traditional MRI and the need for affordable imaging. Low-field MRI provides a viable option due to its lack of reliance on radio-frequency shielding rooms, expensive liquid helium, and cryogen quench pipes. Moreover, its relatively small size and weight allow for easy and affordable installation in most settings. Rather than replacing conventional MRI, low-field MRI will provide new opportunities for imaging both in developing and developed countries. This article discusses the history of low-field MRI, low-field MRI hardware and software, current devices on the market, advantages and disadvantages, and low-field MRI's global potential. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 26 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

3.
PLoS One ; 18(6): e0287344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37319289

RESUMEN

Magnetic resonance imaging (MRI) is a powerful noninvasive diagnostic tool with superior soft tissue contrast. However, access to MRI is limited since current systems depend on homogeneous, high field strength main magnets (B0-fields), with strong switchable gradients which are expensive to install and maintain. In this work we propose a new approach to MRI where imaging is performed in an inhomogeneous field using radiofrequency spatial encoding, thereby eliminating the need for uniform B0-fields and conventional cylindrical gradient coils. The proposed technology uses an innovative data acquisition and reconstruction approach by integrating developments in field cycling, parallel imaging and non-Fourier based algebraic reconstruction. The scanner uses field cycling to image in an inhomogeneous B0-field; in this way magnetization is maximized during the high field polarization phase, and B0 inhomogeneity effects are minimized by using a low field during image acquisition. In addition to presenting the concept, this work provides experimental verification of a long-lived spin echo signal, spatially varying resolution, as well as both simulated and experimental 2D images. Our initial design creates an open MR system that can be installed in a patient examination table for body imaging (e.g., breast or liver) or built into a wall for weighted-spine imaging. The proposed system introduces a new class of inexpensive, open, silent MRIs that could be housed in doctor's offices much like ultrasound is today, making MRI more widely accessible.


Asunto(s)
Imagen por Resonancia Magnética , Imanes , Humanos , Imagen por Resonancia Magnética/métodos , Campos Magnéticos
4.
PLoS One ; 17(9): e0273432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112594

RESUMEN

Since recovery time of the RF coil is long at low field MRI, the rising and the ring-down times of the square pulse are also long, which means the applied sinc pulse can easily be distorted from the changing amplitude. However, both the rising time and ring-down time can be calculated using Q-factor. Using this information, an RF square pulse were compensated by appending two square pulses before and after the RF pulse. The durations of these RF square pulses were calculated using the Q-factor. Since the amplitude of the sinc pulse changes continuously, a series of square pulses were applied to apply sinc pulse to the coil. The minimum number of square pulses and the amplitude of the square pulses were calculated. It was successfully demonstrated that the sinc pulse can be compensated using a series of square pulses. The more number of square pulses were used, the smoother sinc pulse was applied to the RF coil. The Q-factor was experimentally calculated from the ring-down time of a signal induced in a sniffer loop which was connected to an oscilloscope. The resulting Q-factor was then used to calculate both the duration and amplitude of the square pulses for compensation. Echo trains were also acquired in an inhomogeneous B0 field using the compensated RF pulses. In order to enhance the SNR of the echo trains, a pre-polarization pulse was added to the CPMG spin echo sequence. The SNRs of the echo signal acquired using compensated pulses were compared with those of signal obtained with uncompensated pulses and showed significant improvements of 61.1% and 51.5% for the square and sinc shaped pulses respectively.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Frecuencia Cardíaca , Imagen por Resonancia Magnética/métodos , Silanos
5.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379995

RESUMEN

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Asunto(s)
Hidrocefalia , Animales , Fenómenos Biomecánicos , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/genética , Ratones , Neurogénesis/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
6.
Magn Reson Med ; 86(4): 2105-2121, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34096083

RESUMEN

PURPOSE: Myocardial strain is increasingly used to assess left ventricular (LV) function. Incorporation of LV deformation into finite element (FE) modeling environment with subsequent strain calculation will allow analysis to reach its full potential. We describe a new kinematic model-based analysis framework (KMAF) to calculate strain from 3D cine-DENSE (displacement encoding with stimulated echoes) MRI. METHODS: Cine-DENSE allows measurement of 3D myocardial displacement with high spatial accuracy. The KMAF framework uses cine cardiovascular magnetic resonance (CMR) to facilitate cine-DENSE segmentation, interpolates cine-DENSE displacement, and kinematically deforms an FE model to calculate strain. This framework was validated in an axially compressed gel phantom and applied in 10 healthy sheep and 5 sheep after myocardial infarction (MI). RESULTS: Excellent Bland-Altman agreement of peak circumferential (Ecc ) and longitudinal (Ell ) strain (mean difference = 0.021 ± 0.04 and -0.006 ± 0.03, respectively), was found between KMAF estimates and idealized FE simulation. Err had a mean difference of -0.014 but larger variation (±0.12). Cine-DENSE estimated end-systolic (ES) Ecc , Ell and Err exhibited significant spatial variation for healthy sheep. Displacement magnitude was reduced on average by 27%, 42%, and 56% after MI in the remote, adjacent and MI regions, respectively. CONCLUSIONS: The KMAF framework allows accurate calculation of 3D LV Ecc and Ell from cine-DENSE.


Asunto(s)
Imagen por Resonancia Cinemagnética , Infarto del Miocardio , Animales , Fenómenos Biomecánicos , Infarto del Miocardio/diagnóstico por imagen , Reproducibilidad de los Resultados , Ovinos , Función Ventricular Izquierda
7.
Heliyon ; 5(2): e01226, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30828660

RESUMEN

BACKGROUND: Brain- and lesion-volumes derived from magnetic resonance images (MRI) serve as important imaging markers of disease progression in neurodegenerative diseases and aging. While manual segmentation of these volumes is both tedious and impractical in large cohorts of subjects, automated segmentation methods often fail in accurate segmentation of brains with severe atrophy or high lesion loads. The purpose of this study was to develop an atlas-free brain Classification using DErivative-based Features (C-DEF), which utilizes all scans that may be acquired during the course of a routine MRI study at any center. METHODS: Proton-density, T2-weighted, T1-weighted, brain-free water, 3D FLAIR, 3D T2-weighted, and 3D T2*-weighted images, collected routinely on patients with neuroinflammatory diseases at the NIH, were used to optimize the C-DEF algorithm on healthy volunteers and HIV + subjects (cohort 1). First, manually marked lesions and eroded FreeSurfer brain segmentation masks (compiled into gray and white matter, globus pallidus, CSF labels) were used in training. Next, the optimized C-DEF was applied on a separate cohort of HIV + subjects (cohort two), and the results were compared with that of FreeSurfer and Lesion-TOADS. Finally, C-DEF segmentation was evaluated on subjects clinically diagnosed with various other neurological diseases (cohort three). RESULTS: C-DEF algorithm was optimized using leave-one-out cross validation on five healthy subjects (age 36 ± 11 years), and five subjects infected with HIV (age 57 ± 2.6 years) in cohort one. The optimized C-DEF algorithm outperformed FreeSurfer and Lesion-TOADS segmentation in 49 other subjects infected with HIV (cohort two, age 54 ± 6 years) in qualitative and quantitative comparisons. Although trained only on HIV brains, sensitivity to detect lesions using C-DEF increased by 45% in HTLV-I-associated myelopathy/tropical spastic paraparesis (n = 5; age 58 ± 7 years), 33% in multiple sclerosis (n = 5; 42 ± 9 years old), and 4% in subjects with polymorphism of the cytotoxic T-lymphocyte-associated protein 4 gene (n = 5; age 24 ± 12 years) compared to Lesion-TOADS. CONCLUSION: C-DEF outperformed other segmentation algorithms in the various neurological diseases explored herein, especially in lesion segmentation. While the results reported are from routine images acquired at the NIH, the algorithm can be easily trained and optimized for any set of contrasts and protocols for wider application. We are currently exploring various technical aspects of optimal implementation of CDEF in a clinical setting and evaluating a larger cohort of patients with other neurological diseases. Improving the accuracy of brain segmentation methodology will help better understand the relationship of imaging abnormalities to clinical and neuropsychological markers in disease.

8.
J Biomech Eng ; 138(8)2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27367268

RESUMEN

Stroke caused by an embolism accounts for about a third of all stroke cases. Understanding the source and cause of the embolism is critical for diagnosis and long-term treatment of such stroke cases. The complex nature of the transport of an embolus within large arteries is a primary hindrance to a clear understanding of embolic stroke etiology. Recent advances in medical image-based computational hemodynamics modeling have rendered increasing utility to such techniques as a probe into the complex flow and transport phenomena in large arteries. In this work, we present a novel, patient-specific, computational framework for understanding embolic stroke etiology, by combining image-based hemodynamics with discrete particle dynamics and a sampling-based analysis. The framework allows us to explore the important question of how embolism source manifests itself in embolus distribution across the various major cerebral arteries. Our investigations illustrate prominent numerical evidence regarding (i) the size/inertia-dependent trends in embolus distribution to the brain; (ii) the relative distribution of cardiogenic versus aortogenic emboli among the anterior, middle, and posterior cerebral arteries; (iii) the left versus right brain preference in cardio-emboli and aortic-emboli transport; and (iv) the source-destination relationship for embolisms affecting the brain.


Asunto(s)
Circulación Cerebrovascular , Círculo Arterial Cerebral/fisiopatología , Embolia Intracraneal/complicaciones , Embolia Intracraneal/fisiopatología , Modelos Cardiovasculares , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Simulación por Computador , Humanos , Flujo Pulsátil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...