Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-6, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497749

RESUMEN

Endothelial cells produce a semipermeable barrier known as the blood-brain barrier (BBB) to keep undesired chemicals out of the central nervous system (CNS). However, this barrier also restricts the exploration of potential new medications due to insufficient exposure. To address this challenge, machine learning (ML) algorithms can be useful to predict the BBB permeability of chemical compounds. Support vector machines, continuous neural networks, and deep learning approaches have been used to identify compounds that can penetrate the BBB. However, predicting BBB permeability based solely on chemical structure can be difficult. In the current research, we developed an ML model using a large dataset to predict BBB permeability, which could be used for early-stage drug screening of potential CNS medications. Our artificial neural network ANN algorithm exhibited an accuracy of 0.94, specificity of 0.83, sensitivity of 0.97, AUC of 0.96, and MCC of 0.83. These metrics suggest that our model has a high accuracy rate in predicting BBB permeability and therefore has the potential to advance drug discovery efforts in the CNS. This study's outcomes demonstrate the potential for ML models to predict BBB permeability accurately, aiding in the identification of new CNS therapeutic options.Communicated by Ramaswamy H. Sarma.

2.
Mol Divers ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554168

RESUMEN

Cancer, being the second leading cause of death globally. So, the development of effective anticancer treatments is crucial in the field of medicine. Anticancer peptides (ACPs) have shown promising therapeutic potential in cancer treatment compared to traditional methods. However, the process of identifying ACPs through experimental means is often time-intensive and expensive. To overcome this issue, we employed a machine learning-based approach for the first time to develop an anticancer model using small molecules. Anticancer small molecules (ACSMs) are compounds that have been developed to target and inhibit cancer cells. In this study, we used 10,000 compounds to develop the machine learning models using five algorithms such as, Random Forest (RF), Light gradient boosting machine (LightGBM), K-nearest neighbors (KNN), Decision tree (DT) and Extreme Gradient Boosting (XGB). The developed models were evaluated using the test set and top three models were identified (RF, LightGBM and XGB). Furthermore, to validate the predictive performance of our models, we have performed external validation using an FDA approved anticancer compounds/drugs. Following this analysis, we found that our LightGBM model correctly predicted 9 compounds as active. However, RF and XGB exhibited some limitations by predicting 8 and 7 compounds as active out of 10, respectively. These results demonstrate that, when compared to RF and XGB, the LightGBM model showcase robust prediction capabilities, achieving a superior accuracy of 79% with an AUC of 0.88. These findings provide promising insights into the potential of our approach for predicting anticancer small molecules, highlighting the role of machine learning in advancing cancer treatment research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA