Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 281(Pt 2): 136344, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374714

RESUMEN

In the pursuit of sustainable advancements in bio-inspired fiber reinforced polymer composite materials, the exploration of novel natural fibers has become a focal point of research. This experimental study aims to elucidate the unexplored potential of Hibiscus Rosa-sinensis fiber (HRF) as a versatile reinforcement material for high-performance composites. Through an integrated approach, this research offers a meticulous analysis of the HRF's physico-chemical properties, and single fiber tensile strength. The crystalline structure are revealed by X-ray diffraction (XRD), thermal behavior are characterized through thermo-gravimetric analysis (TGA), and surface morphology has been visualized using field emission scanning electron microscopy (FESEM) studies. From the results, it is found that the HRF contains a cellulose content of 79.50 %, positioning it as a prime bast fiber among its counterparts. This composition is complemented by hemicellulose (10.36 %), lignin (4.62 %), wax (0.84 %), and ash (2.96 %). The Fourier-transform infrared spectroscopy (FTIR) spectra unveils the intricate functional groups present in the fibers. XRD analysis highlights a crystallinity index (CI) of 66.93 %, confirming a well-organized and structured crystalline arrangement. The thermal stability established through TGA underscores HRF's resilience up to 284 °C, presenting it is an optimal reinforcement material for bio-inspired green composites operating within 280 °C. The surface morphology of HRF is examined through FESEM and three-dimensional profiling, showcasing its inherent morphological intricacies. The multidimensional characterization provided herein contributes significantly to the evolving landscape of biocomposite research, fostering a platform for future advancements and innovations in HRF-based composite materials.

2.
Int J Biol Macromol ; 275(Pt 2): 133787, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992535

RESUMEN

Bougainvillea glabra fibers (BGFs) present a promising avenue for sustainable material development owing to their abundance and favorable properties. This study entails a thorough investigation into the composition, physical characteristics, mechanical behavior, structural properties, thermal stability, and hydrothermal absorption behavior of BGFs. Chemical analysis reveals the predominant presence of cellulose (68.92 %), accompanied by notable proportions of hemicellulose (12.64 %), lignin (9.56 %), wax (3.72 %), moisture (11.78 %), and ash (1.75 %). Physical measurements ascertain a mean fiber diameter of approximately 232.63 ± 8.59 µm, while tensile testing demonstrates exceptional strength, with stress values ranging from 120 ± 18.26 MPa to a maximum of 770 ± 23.19 MPa at varying strains. X-ray diffraction (XRD) elucidates a crystalline index (CI) of 68.17 % and a crystallite size (CS) of 9.42 nm, indicative of a well-defined crystalline structure within the fibers. Fourier-transform infrared spectroscopy (FTIR) confirms the presence of characteristic functional groups associated with cellulose, hemicellulose, wax, and water content. Thermogravimetric analysis (TGA) delineates distinct thermal degradation stages, with onset temperatures ranging from 102.76 °C for water loss to 567.55 °C for ash formation. Furthermore, hydrothermal absorption behavior exhibits temperature and time-dependent trends, with absorption percentages ranging from 15.26 % to 32.19 % at temperatures between 30 °C and 108 °C and varying exposure durations. These comprehensive findings provide essential insights into the properties and potential applications of BGFs in diverse fields such as bio-composites, textiles, and environmentally friendly packaging solutions.


Asunto(s)
Nyctaginaceae , Nyctaginaceae/química , Celulosa/química , Resistencia a la Tracción , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Fenómenos Mecánicos , Difracción de Rayos X , Temperatura , Lignina/química , Termogravimetría
3.
Int J Biol Macromol ; 270(Pt 2): 132492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763245

RESUMEN

Embarking on a pioneering investigation, this study unravels the extraordinary qualities of Tecoma stans Fibers (TSFs), freshly harvested from the rachis, establishing them as prospective reinforcements for biocomposites. Delving into their intricate characteristics, TSFs exhibit a unique fusion of physical resilience, with a density of 1.81 ± 0.39 g/cc and a diameter of 234.12 ± 7.63 µm. Complementing their physical prowess, their chemical composition boasts a harmonious blend of cellulose (70.1 ± 9.06 wt%), hemicellulose (13.56 ± 4.29 wt%), lignin (7.62 ± 2.39 wt%), moisture (4.21 ± 1.56 wt%), wax (2.37 ± 0.63 wt%), and ash (1.25 ± 0.36 wt%). In the realm of mechanical strength, TSFs showcase an impressive tensile strength of 639 ± 18.47 MPa, coupled with a robust strain at failure of 1.75 ± 0.13 % and a Young Modulus of 36.51 ± 1.96 GPa. Unveiling their crystalline intricacies, these fibers reveal a microfibril angle of 14.66 ± 0.15°, a crystalline index (CI) of 63.83 %, and a crystallite size (CS) of 9.27 nm. Beyond their mechanical marvels, TSFs exhibit unwavering thermal stability, enduring temperatures up to 297.36 °C, with a Tmax reaching an impressive 392.09 °C.


Asunto(s)
Celulosa , Resistencia a la Tracción , Celulosa/química , Corteza de la Planta/química , Lignina/química , Polímeros/química , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA