Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8391, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600238

RESUMEN

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results suggest that AAVrh.10hFXN can likely induce expression of therapeutic levels of mature hFXN in mice.


Asunto(s)
Frataxina , Ataxia de Friedreich , Humanos , Animales , Ratones , Corazón , Procesamiento Proteico-Postraduccional , Hígado/metabolismo , Terapia Genética , Proteínas de Unión a Hierro/metabolismo , Ataxia de Friedreich/terapia , Ataxia de Friedreich/tratamiento farmacológico
2.
Pharm Res ; 40(10): 2383-2397, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37880551

RESUMEN

Immunogenicity assessment of Adeno-Associated Virus (AAV) vectors is a critical part of gene therapy drug development. Whether the assays are used for inclusion/exclusion criteria or to monitor the safety and efficacy of the gene therapy, they are critical bioanalytical assessments. While total anti-AAV assays are perceived as easier to develop and implement than neutralizing anti-AAV assays, the gene therapy field is still nascent, and it is not yet clear which of the assays should be implemented at what stage of drug development. Recently AAVrh.10 has gained interest for use in gene therapies targeting cardiac, neurological, and other diseases due to its enhanced transduction efficiency. There is limited information on anti-AAVrh.10 antibodies and their clinical impact; thus, the information presented herein documents the validation of both a total antibody assay (TAb) and a neutralizing antibody (NAb) assay for anti-AAVrh.10 antibodies. In this manuscript, the validation was performed in accordance with the 2019 FDA immunogenicity guidance with additional evaluations to comply with CLIA where applicable. The AAVrh.10 TAb and NAb assays were compared in terms of sensitivity, drug tolerance, and precision, along with a concordance analysis using the same individual serum samples. This comparison gave insight into the utility of each format as a screening assay for inclusion into clinical studies.


Asunto(s)
Anticuerpos Neutralizantes , Dependovirus , Anticuerpos Neutralizantes/genética , Dependovirus/genética , Serogrupo , Bioensayo , Terapia Genética , Vectores Genéticos
3.
Hum Gene Ther ; 34(17-18): 905-916, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37624739

RESUMEN

CLN2 disease is a fatal, childhood autosomal recessive disorder caused by mutations in ceroid lipofuscinosis type 2 (CLN2) gene, encoding tripeptidyl peptidase 1 (TPP-1). Loss of TPP-1 activity leads to accumulation of storage material in lysosomes and resultant neuronal cell death with neurodegeneration. Genotype/phenotype comparisons suggest that the phenotype should be ameliorated with increase of TPP-1 levels to 5-10% of normal with wide central nervous system (CNS) distribution. Our previous clinical study showed that intraparenchymal (IPC) administration of AAVrh.10hCLN2, an adeno-associated vector serotype rh.10 encoding human CLN2, slowed, but did not stop disease progression, suggesting that this may be insufficient to distribute the therapy throughout the CNS (Sondhi 2020). In this study, we assessed whether the less invasive intracisternal delivery route would be safe and provide a wider distribution of TPP-1. A study was conducted in nonhuman primates (NHPs) with intracisternal delivery to cerebrospinal fluid (CSF) of AAVrh.10hCLN2 (5 × 1013 genome copies) or phosphate buffered saline (PBS). No abnormal behavior was noted. CNS magnetic resonance imaging and clinical chemistry data were all unremarkable. Histopathology of major organs had no abnormal finding attributable to the intervention or the vector, except that in one out of two animals treated with AAVrh.10hCLN2, dorsal root ganglia showed mild-to-moderate mononuclear cell infiltrates and neuronal degeneration. In contrast to our previous NHP study (Sondhi 2012) with IPC administration where TPP-1 activity was >2 × above controls in 30% of treated brains, in the two intracisternal treated NHPs, the TPP-1 activity was >2 × above controls in 50% and 41% of treated brains, and 52% and 84% of brain had >1,000 vector genomes/µg DNA, compared to 0% in the two PBS NHP. CSF TPP1 levels in treated animals were 43-62% of normal human levels. Collectively, these data indicate that AAVrh.10hCLN2 delivered by intracisternal route is safe and widely distributes TPP-1 in brain and CSF at levels that are potentially therapeutic. Clinical Trial Registration: NCT02893826, NCT04669535, NCT04273269, NCT03580083, NCT04408625, NCT04127578, and NCT04792944.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Animales , Niño , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Distribución Tisular , Sistema Nervioso Central , Encéfalo/diagnóstico por imagen , Primates
4.
Res Sq ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38234818

RESUMEN

Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results demonstrate that AAVrh.10hFXN may induce expression of therapeutic levels of mature hFXN in mice.

5.
J Biol Chem ; 296: 100769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33971197

RESUMEN

Acid alpha-glucosidase (GAA) is a lysosomal glycogen-catabolizing enzyme, the deficiency of which leads to Pompe disease. Pompe disease can be treated with systemic recombinant human GAA (rhGAA) enzyme replacement therapy (ERT), but the current standard of care exhibits poor uptake in skeletal muscles, limiting its clinical efficacy. Furthermore, it is unclear how the specific cellular processing steps of GAA after delivery to lysosomes impact its efficacy. GAA undergoes both proteolytic cleavage and glycan trimming within the endolysosomal pathway, yielding an enzyme that is more efficient in hydrolyzing its natural substrate, glycogen. Here, we developed a tool kit of modified rhGAAs that allowed us to dissect the individual contributions of glycan trimming and proteolysis on maturation-associated increases in glycogen hydrolysis using in vitro and in cellulo enzyme processing, glycopeptide analysis by MS, and high-pH anion-exchange chromatography with pulsed amperometric detection for enzyme kinetics. Chemical modifications of terminal sialic acids on N-glycans blocked sialidase activity in vitro and in cellulo, thereby preventing downstream glycan trimming without affecting proteolysis. This sialidase-resistant rhGAA displayed only partial activation after endolysosomal processing, as evidenced by reduced catalytic efficiency. We also generated enzymatically deglycosylated rhGAA that was shown to be partially activated despite not undergoing proteolytic processing. Taken together, these data suggest that an optimal rhGAA ERT would require both N-glycan and proteolytic processing to attain the most efficient enzyme for glycogen hydrolysis and treatment of Pompe disease. Future studies should examine the amenability of next-generation ERTs to both types of cellular processing.


Asunto(s)
Endosomas/metabolismo , Polisacáridos/metabolismo , alfa-Glucosidasas/metabolismo , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Glicopéptidos/metabolismo , Humanos , Hidrólisis , Proteolisis
6.
J Biol Chem ; 293(27): 10810-10824, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29769320

RESUMEN

It is estimated that ∼1% of the world's population has intellectual disability, with males affected more often than females. OGT is an X-linked gene encoding for the enzyme O-GlcNAc transferase (OGT), which carries out the reversible addition of N-acetylglucosamine (GlcNAc) to Ser/Thr residues of its intracellular substrates. Three missense mutations in the tetratricopeptide (TPR) repeats of OGT have recently been reported to cause X-linked intellectual disability (XLID). Here, we report the discovery of two additional novel missense mutations (c.775 G>A, p.A259T, and c.1016 A>G, p.E339G) in the TPR domain of OGT that segregate with XLID in affected families. Characterization of all five of these XLID missense variants of OGT demonstrates modest declines in thermodynamic stability and/or activities of the variants. We engineered each of the mutations into a male human embryonic stem cell line using CRISPR/Cas9. Investigation of the global O-GlcNAc profile as well as OGT and O-GlcNAc hydrolase levels by Western blotting showed no gross changes in steady-state levels in the engineered lines. However, analyses of the differential transcriptomes of the OGT variant-expressing stem cells revealed shared deregulation of genes involved in cell fate determination and liver X receptor/retinoid X receptor signaling, which has been implicated in neuronal development. Thus, here we reveal two additional mutations encoding residues in the TPR regions of OGT that appear causal for XLID and provide evidence that the relatively stable and active TPR variants may share a common, unelucidated mechanism of altering gene expression profiles in human embryonic stem cells.


Asunto(s)
Linaje de la Célula , Células Madre Embrionarias/metabolismo , Genes Ligados a X , Marcadores Genéticos , Discapacidad Intelectual/genética , Mutación Missense , N-Acetilglucosaminiltransferasas/genética , Diferenciación Celular , Niño , Cristalografía por Rayos X , Células Madre Embrionarias/patología , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/patología , Masculino , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Linaje , Conformación Proteica , Transducción de Señal
7.
ACS Chem Biol ; 13(5): 1353-1360, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29641181

RESUMEN

The attachment of the sugar N-acetyl-D-glucosamine (GlcNAc) to specific serine and threonine residues on proteins is referred to as protein O-GlcNAcylation. O-GlcNAc transferase (OGT) is the enzyme responsible for carrying out the modification, while O-GlcNAcase (OGA) reverses it. Protein O-GlcNAcylation has been implicated in a wide range of cellular processes including transcription, proteostasis, and stress response. Dysregulation of O-GlcNAc has been linked to diabetes, cancer, and neurodegenerative and cardiovascular disease. OGA has been proposed to be a drug target for the treatment of Alzheimer's and cardiovascular disease given that increased O-GlcNAc levels appear to exert a protective effect. The search for specific, potent, and drug-like OGA inhibitors with bioavailability in the brain is therefore a field of active research, requiring orthogonal high-throughput assay platforms. Here, we describe the synthesis of a novel probe for use in a fluorescence polarization based assay for the discovery of inhibitors of OGA. We show that the probe is suitable for use with both human OGA, as well as the orthologous bacterial counterpart from Clostridium perfringens, CpOGA, and the lysosomal hexosaminidases HexA/B. We structurally characterize CpOGA in complex with a ligand identified from a fragment library screen using this assay. The versatile synthesis procedure could be adapted for making fluorescent probes for the assay of other glycoside hydrolases.


Asunto(s)
Polarización de Fluorescencia/métodos , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo , Cristalografía por Rayos X , Humanos , N-Acetilglucosaminiltransferasas/química , Prueba de Estudio Conceptual , Conformación Proteica , Especificidad por Sustrato
8.
Nat Chem Biol ; 13(8): 882-887, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28604694

RESUMEN

Protein O-GlcNAcylation is a reversible post-translational modification of serines and threonines on nucleocytoplasmic proteins. It is cycled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (O-GlcNAcase or OGA). Genetic approaches in model organisms have revealed that protein O-GlcNAcylation is essential for early embryogenesis. The Drosophila melanogaster gene supersex combs (sxc), which encodes OGT, is a polycomb gene, whose null mutants display homeotic transformations and die at the pharate adult stage. However, the identities of the O-GlcNAcylated proteins involved and the underlying mechanisms linking these phenotypes to embryonic development are poorly understood. Identification of O-GlcNAcylated proteins from biological samples is hampered by the low stoichiometry of this modification and by limited enrichment tools. Using a catalytically inactive bacterial O-GlcNAcase mutant as a substrate trap, we have enriched the O-GlcNAc proteome of the developing Drosophila embryo, identifying, among others, known regulators of Hox genes as candidate conveyors of OGT function during embryonic development.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/enzimología , Mutación , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Drosophila melanogaster/genética
9.
J Biol Chem ; 292(21): 8948-8963, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28302723

RESUMEN

O-GlcNAc is a regulatory post-translational modification of nucleocytoplasmic proteins that has been implicated in multiple biological processes, including transcription. In humans, single genes encode enzymes for its attachment (O-GlcNAc transferase (OGT)) and removal (O-GlcNAcase (OGA)). An X-chromosome exome screen identified a missense mutation, which encodes an amino acid in the tetratricopeptide repeat, in OGT (759G>T (p.L254F)) that segregates with X-linked intellectual disability (XLID) in an affected family. A decrease in steady-state OGT protein levels was observed in isolated lymphoblastoid cell lines from affected individuals, consistent with molecular modeling experiments. Recombinant expression of L254F-OGT demonstrated that the enzyme is active as both a glycosyltransferase and an HCF-1 protease. Despite the reduction in OGT levels seen in the L254F-OGT individual cells, we observed that steady-state global O-GlcNAc levels remained grossly unaltered. Surprisingly, lymphoblastoids from affected individuals displayed a marked decrease in steady-state OGA protein and mRNA levels. We observed an enrichment of the OGT-containing transcriptional repressor complex mSin3A-HDAC1 at the proximal promoter region of OGA and correspondingly decreased OGA promoter activity in affected cells. Global transcriptome analysis of L254F-OGT lymphoblastoids compared with controls revealed a small subset of genes that are differentially expressed. Thus, we have begun to unravel the molecular consequences of the 759G>T (p.L254F) mutation in OGT that uncovered a compensation mechanism, albeit imperfect, given the phenotype of affected individuals, to maintain steady-state O-GlcNAc levels. Thus, a single amino acid substitution in the regulatory domain (the tetratricopeptide repeat domain) of OGT, which catalyzes the O-GlcNAc post-translational modification of nuclear and cytosolic proteins, appears causal for XLID.


Asunto(s)
Cromosomas Humanos X , Regulación Enzimológica de la Expresión Génica , Discapacidad Intelectual Ligada al Cromosoma X/enzimología , Mutación Missense , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Línea Celular Transformada , Glicosilación , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , N-Acetilglucosaminiltransferasas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética
10.
Biochem J ; 470(2): 255-262, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26348912

RESUMEN

O-GlcNAcylation is a reversible type of serine/threonine glycosylation on nucleocytoplasmic proteins in metazoa. Various genetic approaches in several animal models have revealed that O-GlcNAcylation is essential for embryogenesis. However, the dynamic changes in global O-GlcNAcylation and the underlying mechanistic biology linking them to embryonic development is not understood. One of the limiting factors towards characterizing changes in O-GlcNAcylation has been the limited specificity of currently available tools to detect this modification. In the present study, harnessing the unusual properties of an O-GlcNAcase (OGA) mutant that binds O-GlcNAc (O-N-acetylglucosamine) sites with nanomolar affinity, we uncover changes in protein O-GlcNAcylation as a function of Drosophila development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Drosophila/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Acilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Bacterianas/genética , Far-Western Blotting , Clostridium perfringens/enzimología , Drosophila/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Células HEK293 , Humanos , Mutación , beta-N-Acetilhexosaminidasas/genética
11.
J Biol Chem ; 290(19): 11969-82, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25778404

RESUMEN

Protein O-GlcNAcylation is a reversible post-translational signaling modification of nucleocytoplasmic proteins that is essential for embryonic development in bilateria. In a search for a reductionist model to study O-GlcNAc signaling, we discovered the presence of functional O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and nucleocytoplasmic protein O-GlcNAcylation in the most basal extant animal, the placozoan Trichoplax adhaerens. We show via enzymatic characterization of Trichoplax OGT/OGA and genetic rescue experiments in Drosophila melanogaster that these proteins possess activities/functions similar to their bilaterian counterparts. The acquisition of O-GlcNAc signaling by metazoa may have facilitated the rapid and complex signaling mechanisms required for the evolution of multicellular organisms.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Placozoa/enzimología , Acetilglucosamina/química , Animales , Animales Modificados Genéticamente , Núcleo Celular/enzimología , Cruzamientos Genéticos , Citoplasma/enzimología , Drosophila melanogaster , Células HEK293 , Humanos , Concentración 50 Inhibidora , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Interferencia de ARN , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...