Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(23): 16540-16549, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38828709

RESUMEN

The goals of this work are to attempt to decipher if an aniline dication can isomerize to a picoline dication in a given astrochemical environment and if the dissociation of such dications could be a source of kinetically hot fragment ions, some of which could be of significance in the interstellar medium. Toward this purpose, the VUV-induced dication dissociation was investigated experimentally using ion-ion coincidence and computationally by optimizing various pathways. Contrary to previous reports, we show here that the dication of aniline is structurally too weak to retain its ring structure while following the dissociation pathways. A fragile open ring structure could lead to all the experimentally observed pathways of noticeable intensity. The significance of this, especially in terms of molecular dynamics, can be assessed by the fact that all the transformations were facilitated by specific hydrogen migration. A clear selectivity is seen where the dication of aniline was found to prefer a rearrangement of hydrogen within the ring rather than transferring from nitrogen to the ring, which is conventionally expected and has to do with the charge state and charge localization.

2.
J Chem Phys ; 159(10)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37702355

RESUMEN

In search of the cause behind the similarities often seen in the fragmentation of PANHs, vacuum ultraviolet (VUV) photodissociation of two pairs of isomers quinoline-isoquinoline and 2-naphthylamine-3-methyl-quinoline are studied using the velocity map imaging technique. The internal energy dependence of all primary fragmentation channels is obtained for all four target molecules. The decay dynamics of the four molecules is studied by comparing their various experimental signatures. The dominant channel for the first pair of isomers is found to be hydrogen cyanide (HCN) neutral loss, while the second pair of isomers lose HCNH neutral as its dominant channel. Despite this difference in their primary decay products and the differences in the structures of the four targets, various similarities in their experimental signatures are found, which could be explained by isomerization mechanisms to common structures. The fundamental role of these isomerization in controlling different dissociative channels is explored via a detailed analysis of the experimental photoelectron-photoion coincidences and the investigation of the theoretical potential energy surface. These results add to the notion of a universal PANH fragmentation mechanism and suggests the seven member isomerization as a key candidate for this universal mechanism. The balance between isomerization, dissociation, and other key mechanistic processes in the reaction pathways, such as hydrogen migrations, is also highlighted for the four molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...