Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008747

RESUMEN

The structure of a free nickel (II) octamethylporphyrin (NiOMP) molecule was determined for the first time through a combined gas-phase electron diffraction (GED) and mass spectrometry (MS) experiment, as well as through quantum chemical (QC) calculations. Density functional theory (DFT) calculations do not provide an unambiguous answer about the planarity or non-planar distortion of the NiOMP skeleton. The GED refinement in such cases is non-trivial. Several approaches to the inverse problem solution were used. The obtained results allow us to argue that the ruffling effect is manifested in the NiOMP molecule. The minimal critical distance between the central atom of the metal and nitrogen atoms of the coordination cavity that provokes ruffling distortion in metal porphyrins is about 1.96 Å.


Asunto(s)
Gases/química , Modelos Moleculares , Níquel/química , Porfirinas/química , Teoría Funcional de la Densidad , Conformación Molecular , Termodinámica
2.
J Fluoresc ; 28(1): 393-407, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29280083

RESUMEN

The boron-dipyrromethene (BODIPY) dye containing an annelated cyclohexyl rings at the 2,3 and 5,6-positions of pyrroles has been synthesized and characterized. Photochemical properties of the obtained compound have been investigated in different individual solvents. 2,3;5,6-Bis(cyclohexano)-BODIPY exhibits intense chromophore properties with maximum of S o → S 1 band in the 543-549 nm (A from 66000 to 96000 L/mol·cm). The complex is a fluorophore with a quantum yield up to ~ 100%. The influence of solvent polarity on the spectral properties was evaluated. To better understand the spectroscopic results, quantum chemical calculations were carried out. Photostability of dye was studied.Graphical Abstract.

3.
Eur Biophys J ; 43(10-11): 545-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25164439

RESUMEN

The porphyrin-based photosensitizers capable of binding to DNA are perspective drug candidates. Here we report the interactions with calf thymus DNA of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (P1) and its derivatives containing Zn(II) or Ni(II) in the coordination sphere. These interactions were studied with absorption and circular dichroism spectroscopy. NiP1 and ZnP1 formed different types of complexes with DNA. NiP1 intercalated into the double helix, whereas ZnP1 bound the DNA groove. Compound P1 displayed both binding modes. The ZnP1-DNA binding constant was approximately three times smaller than the respective values for P1-DNA and NiP1-DNA complexes. Light induced degradation of the reactive oxygen species (ROS) trap 1,3-diphenylisobenzofuran in the presence of P1 and its metal derivatives revealed that NiP1 was a weaker photooxidative agent, whereas P1 and ZnP1 generated ROS to similar extents. Nevertheless, the DNA photodamaging effect of ZnP1 was the most pronounced. Illumination of the supercoiled plasmid caused single-strand DNA photocleavage in the presence of P1 and ZnP1; double strand breaks were detectable with micromolar concentrations of ZnP1. The concentration of ZnP1 required for plasmid photonicking was two times smaller than that of P1 and ~20 times lower than that for NiP1. Thus, the modes of P1, NiP1 and ZnP1 binding to DNA determine the differential photodamaging potency of these porphyrins. A greater accessibility to the solvent of the groove binder ZnP1, compared to the shielded intercalator NiP1 and the intercalated P1 molecules, allows for an efficient local generation of ROS followed by DNA photocleavage.


Asunto(s)
ADN de Cadena Simple/química , Metaloporfirinas/química , Níquel/química , Fármacos Fotosensibilizantes/química , Compuestos de Piridinio/química , Zinc/química , Secuencia de Aminoácidos , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/efectos de la radiación , Metaloporfirinas/síntesis química , Metaloporfirinas/farmacología , Metaloporfirinas/efectos de la radiación , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/efectos de la radiación , Compuestos de Piridinio/síntesis química , Rayos Ultravioleta
4.
Eur Biophys J ; 41(9): 723-32, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22903195

RESUMEN

Cationic porphyrin-based compounds capable of interacting with DNA are currently under extensive investigation as prospective anticancer and anti-infective drugs. One of the approaches to enhancing the DNA-binding affinity of these ligands is chemical modification of functional groups of the porphyrin macrocycle. We analyzed the interaction with DNA of novel derivatives containing carboxymethyl and ethoxycarbonylmethyl substituents at quaternary nitrogen atoms of pyridinium groups at the periphery of the porphyrin macrocycle. The parameters of binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (P1) and 5,10,15,20-tetrakis(N-ethoxycarbonylmethyl-4-pyridinium)porphyrin (P2) to double-stranded DNA sequences of different nucleotide content were determined using optical spectroscopy. The association constant of P1 interaction with calf thymus DNA (K = 3.4 × 10(6) M(-1)) was greater than that of P2 (K = 2.8 × 10(5) M(-1)). Preferential binding of P1 to GC- rather than AT-rich oligonucleotides was detected. In contrast, P2 showed no preference for particular nucleotide content. Modes of binding of P1 and P2 to GC and AT duplexes were verified using the induced circular dichroism spectra. Molecular modeling confirmed an intercalative mode of interaction of P1 and P2 with CpG islands. The carboxyl groups of the peripheral substituent in P1 determine the specific interactions with GC-rich DNA regions, whereas ethoxycarbonylmethyl substituents disfavor binding to DNA. This study contributes to the understanding of the impact of peripheral substituents on the DNA-binding affinity of cationic porphyrins, which is important for the design of DNA-targeting drugs.


Asunto(s)
ADN/química , Simulación del Acoplamiento Molecular , Porfirinas/química , Compuestos de Piridinio/química , Porfirinas/síntesis química , Compuestos de Piridinio/síntesis química
5.
Dalton Trans ; 41(25): 7550-8, 2012 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-22584745

RESUMEN

Gas-phase electron diffraction was applied for the molecular structure determination of octamethylporphyrin tin(II), SnN(4)C(28)H(28), at the temperature of 706(10) K. The molecule was found to possess C(4v) symmetry with the Sn atom 1.025(30) Å above the plane of the N atoms and the following main internuclear distances (r(h1), Å): Sn-N = 2.301(9), C(α)-N = 1.360(8), C(α)-C(ß) = 1.453(4), C(α)-C(m) = 1.395(4), C(ß)-C(CH3) = 1.498(4). Quantum chemical calculations, DFT (B3LYP, BP86, PBE, PBE0) with cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets reproduce the experimental bond distances with accuracy within 0.03 Å. According to NBO(B3LYP/cc-pVTZ) analysis, the direct donation gives a prevailing contribution to Sn-N bonding, decreasing the net charge on Sn from formal +2 to +1.28. The substitution effects at the pyrrole rings are discussed. The ability of different theoretical methods to predict the structure of this compound is analyzed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...