Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255727

RESUMEN

The biological activity of Galium verum herba was exerted on various tumor cell lines with incredible results, but their potential effect on malignant melanoma has not been established yet. Therefore, the current study was structured in two directions: (i) the investigation of the phytochemical profile of diethyl ether (GvDEE) and butanol (GvBuOH) extracts of G. verum L. and (ii) the evaluation of their biological profile on A375 human malignant melanoma cell line. The GvDEE extract showed an FT-IR profile different from the butanol one, with high antioxidant capacity (EC50 of GvDEE = 0.12 ± 0.03 mg/mL > EC50 of GvBuOH = 0.18 ± 0.05 mg/mL). The GvDEE extract also showed antimicrobial potential, especially against Gram-positive bacteria strains, compared to the butanol extract, which has no antimicrobial activity against any bacterial strain tested. The results regarding the antitumor potential showed that both extracts decreased A375 cell viability largely (69% at a dose of 55 µg/mL of the GvDEE extract). Moreover, both extracts induce nuclear fragmentation by forming apoptotic bodies and slight chromatin condensation, which is more intense for GvDEE. Considering the results, one can state that the Galium verum herba possesses antitumor effects on the A375 human malignant melanoma cell line, a promising phytocompound for the antitumor approach to skin cancer.

2.
Molecules ; 28(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067535

RESUMEN

Galium species are used worldwide for their antioxidant, antibacterial, antifungal, and antiparasitic properties. Although this plant has demonstrated its antitumor properties on various types of cancer, its biological activity on cutaneous melanoma has not been established so far. Therefore, the present study was designed to investigate the phytochemical profile of two extracts of G. verum L. herba (ethanolic and ethyl acetate) as well as the biological profile (antioxidant, antimicrobial, and antitumor effects) on human skin cancer. The extracts showed similar FT-IR phenolic profiles (high chlorogenic acid, isoquercitrin, quercitrin, and rutin), with high antioxidant capacity (EC50 of ethyl acetate phase (0.074 ± 0.01 mg/mL) > ethanol phase (0.136 ± 0.03 mg/mL)). Both extracts showed antimicrobial activity, especially against Gram-positive Streptococcus pyogenes and Staphylococcus aureus bacilli strains, the ethyl acetate phase being more active. Regarding the in vitro antitumor test, the results revealed a dose-dependent cytotoxic effect against A375 melanoma cell lines, more pronounced in the case of the ethyl acetate phase. In addition, the ethyl acetate phase stimulated the proliferation of human keratinocytes (HaCaT), while this effect was not evident in the case of the ethanolic phase at 24 h post-stimulation. Consequently, G. verum l. could be considered a promising phytocompound for the antitumor approach of cutaneous melanoma.


Asunto(s)
Antiinfecciosos , Galium , Melanoma , Rubiaceae , Neoplasias Cutáneas , Humanos , Etanol , Antioxidantes/farmacología , Antioxidantes/química , Galium/química , Rumanía , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Suplementos Dietéticos , Fitoquímicos/farmacología , Fitoquímicos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química
3.
Plants (Basel) ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986941

RESUMEN

Malignant melanoma is one of the most pressing problems in the developing world. New therapeutic agents that might be effective in treating malignancies that have developed resistance to conventional medications are urgently required. Semisynthesis is an essential method for improving the biological activity and the therapeutic efficacy of natural product precursors. Semisynthetic derivatives of natural compounds are valuable sources of new drug candidates with a variety of pharmacological actions, including anticancer ones. Two novel semisynthetic derivatives of betulinic acid-N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2)-were designed and their antiproliferative, cytotoxic, and anti-migratory activity against A375 human melanoma cells was determined in comparison with known N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4) and naturally occurring betulinic acid (BI). A dose-dependent antiproliferative effect with IC50 values that ranged from 5.7 to 19.6 µM was observed in the series of all five compounds including betulinic acid. The novel compounds BA1 (IC50 = 5.7 µM) and BA2 (IC50 = 10.0 µM) were three times and two times more active than the parent cyclic structure B4 and natural BI. Additionally, compounds BA2, BA3, and BA4 possess antibacterial activity against Streptococcus pyogenes ATCC 19615 and Staphylococcus aureus ATCC 25923 with MIC values in the range of 13-16 µg/mL and 26-32 µg/mL, respectively. On the other hand, antifungal activity toward Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019 was found for compound BA3 with MIC 29 µg/mL. This is the first report of antibacterial and antifungal activity of 2,3-indolo-betulinic acid derivatives and also the first extended report on their anti-melanoma activity, which among others includes data on anti-migratory activity and shows the significance of amino acid side chain on the observed activity. The obtained data justify further research on the anti-melanoma and antimicrobial activity of 2,3-indolo-betulinic acid derivatives.

4.
Molecules ; 27(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36431906

RESUMEN

Cancer, in all its types and manifestations, remains one of the most frequent causes of death worldwide; an important number of anticancer drugs have been developed from plants, fungi and animals, starting with natural compounds that were later derivatized in order to achieve an optimized pharmacokinetic/pharmacological profile. Betulinic acid is a pentacyclic triterpenic compound that was identified as an anticancer agent whose main advantage consists in its selective activity, which ensures the almost total lack of cytotoxic side effects. Conjugates of betulinic acid with substituted triazoles, scaffolds with significant pharmacological properties, were synthesized and tested as anticancer agents in order to achieve new therapeutic alternatives. The current paper aims to obtain a C30-1,2,4-triazole derivative of betulinic acid simultaneously acetylated at C3 whose biological activity was tested against RPMI melanoma cells. The compound revealed significant cytotoxic effects at the tested concentrations (2, 10 and 50 µΜ) by significantly decreasing the cell viability to 88.3%, 54.7% and 24.5%, respectively, as compared to the control. The compound's testing in normal HaCaT cells showed a lack of toxicity, which indicates its selective dose-dependent anticancer activity. The investigation of its underlying molecular mechanism revealed an apoptotic effect induced at the mitochondrial level, which was validated through high-resolution respirometry studies.


Asunto(s)
Antineoplásicos , Triterpenos , Animales , Triterpenos/farmacología , Triterpenos/uso terapéutico , Triazoles/farmacología , Antineoplásicos/farmacología , Ácido Betulínico
5.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36355533

RESUMEN

Implementing metallic nanoparticles as research instruments for the transport of therapeutically active compounds remains a fundamentally vital work direction that can still potentially generate novelties in the field of drug formulation development. Gold nanoparticles (GNP) are easily tunable carriers for active phytocompounds like pentacyclic triterpenes. These formulations can boost the bioavailability of a lipophilic structure and, in some instances, can also enhance its therapeutic efficacy. In our work, we proposed a biological in vitro assessment of betulinic acid (BA)-functionalized GNP. BA-GNP were obtained by grafting BA onto previously synthesized citrate-capped GNP through the use of cysteamine as a linker. The nanoformulation was tested in HaCaT human keratinocytes and RPMI-7951 human melanoma cells, revealing selective cytotoxic properties and stronger antiproliferative effects compared to free BA. Further examinations revealed a pro-apoptotic effect, as evidenced by morphological changes in melanoma cells and supported by western blot data showing the downregulation of anti-apoptotic Bcl-2 expression coupled with the upregulation of pro-apoptotic Bax. GNP also significantly inhibited mitochondrial respiration, confirming its mitochondrial-targeted activity.

6.
Front Pharmacol ; 13: 1000608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210849

RESUMEN

Rutin (RUT) is considered one the most attractive flavonoids from a therapeutic perspective due to its multispectral pharmacological activities including antiradical, anti-inflammatory, antiproliferative, and antimetastatic among others. Still, this compound presents a low bioavailability what narrows its clinical applications. To overcome this inconvenience, the current paper was focused on the synthesis, characterization, and toxicological assessment of two RUT bioconjugates obtained by enzymatic esterification with oleic acid (OA) and linoleic acid (LA)-rutin oleate (RUT-O) and rutin linoleate (RUT-L), as flavonoid precursors with improved physicochemical and biological properties. Following the enzymatic synthesis in the presence of Novozyme® 435, the two bioconjugates were obtained, their formation being confirmed by RAMAN and FT-IR spectroscopy. The in vitro and in ovo toxicological assessment of RUT bioconjugates (1-100 µM) was performed using 2D consecrated cell lines (cardiomyoblasts - H9c2(2-1), hepatocytes-HepaRG, and keratinocytes-HaCaT), 3D reconstructed human epidermis tissue (EpiDerm™), and chick chorioallantoic membranes, respectively. The results obtained were test compound, concentration-and cell-type dependent, as follows: RUT-O reduced the viability of H9c2(2-1), HepaRG, and HaCaT cells at 100 µM (to 77.53%, 83.17%, and 78.32%, respectively), and induced cell rounding and floating, as well as apoptotic-like features in the nuclei of all cell lines, whereas RUT-L exerted no signs of cytotoxicity in all cell lines in terms of cell viability, morphology, and nuclear integrity. Both RUT esters impaired the migration of HepaRG cells (at 25 µM) and lack irritative potential (at 100 µM) in vitro (tissue viability >50%) and in ovo (irritation scores of 0.70 for RUT-O, and 0.49 for RUT-L, respectively). Computational predictions revealed an increased lipophilicity, and reduced solubility, drug-likeness and drug score of RUT-O and RUT-L compared to their parent compounds-RUT, OA, and LA. In conclusion, we report a favorable toxicological profile for RUT-L, while RUT-O is dosage-limited since at high concentrations were noticed cytotoxic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...