Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Bioorg Chem ; 141: 106858, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774432

RESUMEN

A series of new uncharged conjugates of adenine, 3,6-dimetyl-, 1,6-dimethyl- and 6-methyluracil with 1,2,4-triazole-3-hydroxamic and 1,2,3-triazole-4-hydroxamic acid moieties were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. It is shown that triazole-hydroxamic acids can reactivate acetylcholinesterase (AChE) inhibited by paraoxon (POX) in vitro, offering reactivation constants comparable to those of pralidoxime (2-PAM). However, in contrast to 2-PAM, triazole-hydroxamic acids demonstrated the ability to reactivate AChE in the brain of rats poisoned with POX. At a dose of 200 mg/kg (i.v.), the lead compound 3e reactivated 22.6 ± 7.3% of brain AChE in rats poisoned with POX. In a rat model of POX-induced delayed neurodegeneration, compound 3e reduced the neuronal injury labeled with FJB upon double administration 1 and 3 h after poisoning. Compound 3e was also shown to prevent memory impairment of POX-poisoned rats as tested in a Morris water maze.


Asunto(s)
Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Ratas , Animales , Acetilcolinesterasa , Reactivadores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/farmacología , Intoxicación por Organofosfatos/tratamiento farmacológico , Ácidos Hidroxámicos , Paraoxon/farmacología , Oximas/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-36960941

RESUMEN

A series of 1,2,3-triazolyl nucleoside analogues bearing N-acetyl-D-glucosamine residue was synthesized by the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction of N1-ω-alkynyl derivatives of uracil, 6-methyluracil, thymine and 3,4,6-tri-O-acetyl-2-deoxy-2-acetamido-ß-D-glucopyranosyl azide. Antiviral assays revealed the lead compound 3f which showed both the same activity against the influenza virus A H1N1 (IC50=70.7 µM) as the antiviral drug Rimantadine in control (IC50=77 µM) and good activity against Coxsackievirus B3 (IC50=13.9 µM) which was one and a half times higher than the activity of the antiviral drug Pleconaril in control (IC50=21.6 µM). According to molecular docking simulations, the antiviral activity of the lead compound 3f against Coxsackie B3 virus can be explained by its binding to a key fragment of the capsid surface of this virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Nucleósidos , Antivirales , Glucosamina/metabolismo , Acetilglucosamina , Simulación del Acoplamiento Molecular , Azidas
4.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677608

RESUMEN

Brain tumor glioblastoma is one of the worst types of cancer. The blood-brain barrier prevents drugs from reaching brain cells and shields glioblastoma from treatment. The creation of nanocarriers to improve drug delivery and internalization effectiveness may be the solution to this issue. In this paper, we report on a new nanocarrier that was developed to deliver the anticancer drug doxorubicin to glioblastoma cells. The nanocarrier was obtained by nanoemulsion polymerization of diallyl disulfide with 1-allylthymine. Diallyl disulfide is a redox-sensitive molecule involved in redox cell activities, and thymine is a uracil derivative and one of the well-known bioactive compounds that can enhance the pharmacological activity of doxorubicin. Doxorubicin was successfully introduced into the nanocarrier with a load capacity of about 4.6%. Biological studies showed that the doxorubicin nanocarrier composition is far more cytotoxic to glioblastoma cells (T98G) than it is to cancer cells (M-HeLa) and healthy cells (Chang liver). The nanocarrier improves the penetration of doxorubicin into T98G cells and accelerates the cells' demise, as is evident from flow cytometry and fluorescence microscopy data. The obtained nanocarrier, in our opinion, is a promising candidate for further research in glioblastoma therapy.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Timina , Portadores de Fármacos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Doxorrubicina , Sistemas de Liberación de Medicamentos , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico
5.
Eur J Med Chem ; 246: 114949, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36462442

RESUMEN

A series of new compounds in which uracil and 3,6-dimethyluracil moieties are bridged with different spacers were prepared and evaluated in vitro for the acetyl- and butyrylcholinesterase (AChE and BChE) inhibitory activities. These bisuracils are shown to be very effective inhibitors of AChE, inhibiting the enzyme at nano- and lower molar concentrations with extremely high selectivity for AChE vs. BChE. Kinetic analysis showed that the lead compound 2h acts as a slow-binding inhibitor of AChE and possess a long drug-target residence time (τ = 1/koff = 18.6 ± 7.5 min). Moreover, compound 2h ameliorated muscle weakness in myasthenia gravis rat model with a lower effective dose and longer lasting effect than pyridostigmine bromide. Besides, it was shown that compound 2h has an effect of increasing efficiency of antidotal therapy as a pretreatment for poisoning by organophosphates.


Asunto(s)
Miastenia Gravis , Intoxicación por Organofosfatos , Ratas , Animales , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Intoxicación por Organofosfatos/tratamiento farmacológico , Uracilo/farmacología , Uracilo/uso terapéutico , Cinética , Miastenia Gravis/inducido químicamente , Miastenia Gravis/tratamiento farmacológico
6.
Molecules ; 27(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431954

RESUMEN

Novel derivatives based on 6-methyluracil and condensed uracil, 2,4-quinazoline-2,4-dione, were synthesized with terminal meta- and para-benzoate moieties in polymethylene chains at the N atoms of the pyrimidine ring. In the synthesized compounds, the polymethylene chains were varied from having tris- to hexamethylene chains and quaternary ammonium groups; varying substituents (ester, salt, acid) at benzene ring were introduced into the chains and benzoate moieties. In vivo biological experiments demonstrated the potency of these compounds in decreasing the number of ß-amyloid plaques and their suitability for the treatment of memory impairment in a transgenic model of Alzheimer's disease.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Modelos Animales de Enfermedad , Placa Amiloide , Uracilo/farmacología , Uracilo/uso terapéutico , Benzoatos
7.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234748

RESUMEN

A series of 5'-phosphorylated (dialkyl phosphates, diaryl phosphates, phosphoramidates, H-phosphonates, phosphates) 1,2,3-triazolyl nucleoside analogues in which the 1,2,3-triazole-4-yl-ß-D-ribofuranose fragment is attached via a methylene group or a butylene chain to the N-1 atom of the heterocycle moiety (uracil or quinazoline-2,4-dione) was synthesized. All compounds were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1). Antiviral assays revealed three compounds, 13b, 14b, and 17a, which showed moderate activity against influenza virus A (H1N1) with IC50 values of 17.9 µM, 51 µM, and 25 µM, respectively. In the first two compounds, the quinazoline-2,4-dione moiety is attached via a methylene or a butylene linker, respectively, to the 1,2,3-triazole-4-yl-ß-D-ribofuranosyl fragment possessing a 5'-diphenyl phosphate substituent. In compound 17a, the uracil moiety is attached via the methylene unit to the 1,2,3-triazole-4-yl-ß-D-ribofuranosyl fragment possessing a 5'-(phenyl methoxy-L-alaninyl)phosphate substituent. The remaining compounds appeared to be inactive against influenza virus A/PR/8/34/(H1N1). The results of molecular docking simulations indirectly confirmed the literature data that the inhibition of viral replication is carried out not by nucleoside analogues themselves, but by their 5'-triphosphate derivatives.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Organofosfonatos , Alquenos , Antivirales/farmacología , Simulación del Acoplamiento Molecular , Nucleósidos/farmacología , Fosfatos , Quinazolinas/farmacología , Relación Estructura-Actividad , Triazoles/farmacología , Uracilo
8.
Bioorg Chem ; 116: 105328, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34500307

RESUMEN

Four new triphenylphosphonium (TPP) conjugates of 1,2,3-triazolyl nucleoside analogues were synthesized by coupling with 8-bromoctyl- or 10- bromdecyltriphenylphosphonium bromide and evaluated for the in vitro antibacterial activity against S. aureus, B. cereus, E. faecalis, two MRSA strains isolated from patients and resistant to fluoroquinolone antibiotic ciprofloxacin and ß-lactam antibiotic amoxicillin, E. coli, antifungal activity against T. mentagrophytes C. albicans and cytotoxicity against human cancer cell lines M-HeLa, MCF-7, A549, HuTu-80, PC3, PANC-1 and normal cell line Wi-38. In these compounds a TPP cation was attached via an octyl or a decyl linker to the N 3 atom of the heterocycle moiety (thymine, 6-methyluracil, quinazoline-2,4-dione) which was bonded with 2',3',5'-tri- O - acetyl-greek beta-d-ribofuranose residue by the (1,2,3-triazol-4-il)methyl bridge. All synthesized compounds showed high antibacterial activity against S. aureus within the range of MIC values 1.2-4.3 greek muM, and three of them appeared to be bactericidal with respect to tis bacterium at MBC values 4.1-4.3 greek muM. Two lead compounds showed both high antibacterial activity against the MRSA strains resistant to Ciprofloxacin and Amoxicillin within the range of MIC values 1.0-4.3 greek muM and high cytotoxicity against human cancer cell lines HuTu-80 and MCF-7 within the range of IC50 values 6.4-10.2 greek muM. This is one of the few examples when phosphonium salts exhibited both antibacterial activity and cytotoxicity against human cancer cell lines. According to the results obtained the bactericidal effect of the lead compounds, unlike classical surfactants, was not caused by a violation of the integrity of the cytoplasmic membrane of bacteria and their cytotoxic activity is most likely associated both with the induction of apoptosis along the mitochondrial pathway and the arrest of the cell cycle in the G0/G1 phase.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Compuestos Organofosforados/farmacología , Triazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Bacillus cereus/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Enterococcus faecalis/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Compuestos Organofosforados/química , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Triazoles/química
9.
Molecules ; 26(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208647

RESUMEN

A series of 1,2,3-triazolyl nucleoside analogues in which 1,2,3-triazol-4-yl-ß-d-ribofuranosyl fragments are attached via polymethylene linkers to both nitrogen atoms of the heterocycle moiety (uracil, 6-methyluracil, thymine, quinazoline-2,4-dione, alloxazine) or to the C-5 and N-3 atoms of the 6-methyluracil moiety was synthesized. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. Antiviral assays revealed three compounds, 2i, 5i, 11c, which showed moderate activity against influenza virus A H1N1 with IC50 values of 57.5 µM, 24.3 µM, and 29.2 µM, respectively. In the first two nucleoside analogues, 1,2,3-triazol-4-yl-ß-d-ribofuranosyl fragments are attached via butylene linkers to N-1 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine, respectively). In nucleoside analogue 11c, two 1,2,3-triazol-4-yl-2',3',5'-tri-O-acetyl-ß-d-ribofuranose fragments are attached via propylene linkers to the C-5 and N-3 atoms of the 6-methyluracil moiety. Almost all synthesized 1,2,3-triazolyl nucleoside analogues showed no antiviral activity against the coxsackie B3 virus. Two exceptions are 1,2,3-triazolyl nucleoside analogs 2f and 5f, in which 1,2,3-triazol-4-yl-2',3',5'-tri-O-acetyl-ß-d-ribofuranose fragments are attached to the C-5 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine respectively). These compounds exhibited high antiviral potency against the coxsackie B3 virus with IC50 values of 12.4 and 11.3 µM, respectively, although both were inactive against influenza virus A H1N1. According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 2i, 5i, and 11c against the H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRp). As to the antiviral activity of nucleoside analogs 2f and 5f against coxsackievirus B3, it can be explained by their interaction with the coat proteins VP1 and VP2.


Asunto(s)
Antivirales/farmacología , Nucleósidos/análogos & derivados , Nucleósidos/química , Química Clic/métodos , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Simulación del Acoplamiento Molecular , Pirimidinas/química , ARN Polimerasa Dependiente del ARN , Relación Estructura-Actividad
10.
Mol Divers ; 25(1): 473-490, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32930935

RESUMEN

Based on the fact that a search for influenza antivirals among nucleoside analogues has drawn very little attention of chemists, the present study reports the synthesis of a series of 1,2,3-triazolyl nucleoside analogues in which a pyrimidine fragment is attached to the ribofuranosyl-1,2,3-triazol-4-yl moiety by a polymethylene linker of variable length. Target compounds were prepared by the Cu alkyne-azide cycloaddition (CuAAC) reaction. Derivatives of uracil, 6-methyluracil, 3,6-dimethyluracil, thymine and quinazolin-2,4-dione with ω-alkyne substituent at the N1 (or N5) atom and azido 2,3,5-tri-O-acetyl-D-ß-ribofuranoside were used as components of the CuAAC reaction. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. The best values of IC50 (inhibiting concentration) and SI (selectivity index) were demonstrated by the lead compound 4i in which the 1,2,3-triazolylribofuranosyl fragment is attached to the N1 atom of the quinazoline-2,4-dione moiety via a butylene linker (IC50 = 30 µM, SI = 24) and compound 8n in which the 1,2,3-triazolylribofuranosyl fragment is attached directly to the N5 atom of the 6-methyluracil moiety (IC50 = 15 µM, SI = 5). According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 4i and 8n against H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRP).


Asunto(s)
Antivirales/síntesis química , Nucleósidos/síntesis química , Nucleósidos/farmacología , Triazoles/síntesis química , Triazoles/farmacología , Animales , Antivirales/química , Antivirales/farmacología , Muerte Celular/efectos de los fármacos , Chlorocebus aethiops , Perros , Enterovirus/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Simulación del Acoplamiento Molecular , Nucleósidos/química , Termodinámica , Triazoles/química , Células Vero
11.
J Biochem Mol Toxicol ; 35(3): e22660, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33156957

RESUMEN

The aim of the study was to investigate the hepatoprotective properties of the conjugate of the xymedon drug substance with succinic acid (1a). The study presents an in vitro comparative evaluation of the cytotoxicity and cytoprotective properties of 1a and succinic acid on a cell line of normal human hepatocytes Chang Liver, and in vivo investigation of the ability of 1a to restore liver from the toxic damage caused by CCl4 in Wistar rats. It was shown that the cytotoxicity of 1a was 19.9 ± 0.8 mmol/L, and that of succinic acid was 14.1 ± 0.2 mmol/L. Against the background of d-galactosamine exposure, the cytoprotective effect of 1a was found to be superior to that of succinic acid. It was shown that 1a caused a significant reduction in necrotic and steatosis changes in the liver and restoration of biochemical markers of cytolysis, as well as bilirubin metabolism and synthetic liver function.


Asunto(s)
Hepatocitos/patología , Hígado/metabolismo , Pirimidinas , Ácido Succínico , Animales , Línea Celular , Citoprotección/efectos de los fármacos , Humanos , Masculino , Pirimidinas/química , Pirimidinas/farmacología , Ratas , Ratas Wistar , Ácido Succínico/química , Ácido Succínico/farmacología
12.
Sci Rep ; 10(1): 16611, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024231

RESUMEN

Organophosphorus (OP) compounds represent a serious health hazard worldwide. The dominant mechanism of their action results from covalent inhibition of acetylcholinesterase (AChE). Standard therapy of acute OP poisoning is partially effective. However, prophylactic administration of reversible or pseudo-irreversible AChE inhibitors before OP exposure increases the efficiency of standard therapy. The purpose of the study was to test the duration of the protective effect of a slow-binding reversible AChE inhibitor (C547) in a mouse model against acute exposure to paraoxon (POX). It was shown that the rate of inhibition of AChE by POX in vitro after pre-inhibition with C547 was several times lower than without C547. Ex vivo pre-incubation of mouse diaphragm with C547 significantly prevented the POX-induced muscle weakness. Then it was shown that pre-treatment of mice with C547 at the dose of 0.01 mg/kg significantly increased survival after poisoning by 2xLD50 POX. The duration of the pre-treatment was effective up to 96 h, whereas currently used drug for pre-exposure treatment, pyridostigmine at a dose of 0.15 mg/kg was effective less than 24 h. Thus, long-lasting slow-binding reversible AChE inhibitors can be considered as new potential drugs to increase the duration of pre-exposure treatment of OP poisoning.


Asunto(s)
Compuestos de Bencilamonio/administración & dosificación , Bromuros/administración & dosificación , Inhibidores de la Colinesterasa/administración & dosificación , Intoxicación por Organofosfatos/prevención & control , Compuestos Organofosforados/toxicidad , Paraoxon/toxicidad , Bromuro de Piridostigmina/administración & dosificación , Animales , Compuestos de Bencilamonio/farmacología , Bromuros/farmacología , Inhibidores de la Colinesterasa/farmacología , Preparaciones de Acción Retardada , Modelos Animales de Enfermedad , Ratones , Bromuro de Piridostigmina/farmacología , Factores de Tiempo
13.
Molecules ; 25(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932702

RESUMEN

In this study, novel derivatives based on 6-methyluracil and condensed uracil were synthesized, namely, 2,4-quinazoline-2,4-dione with ω-(ortho-nitrilebenzylethylamino) alkyl chains at the N atoms of the pyrimidine ring. In this series of synthesized compounds, the polymethylene chains were varied from having tetra- to hexamethylene chains, and secondary NH, tertiary ethylamino, and quaternary ammonium groups were introduced into the chains. The molecular modeling of the compounds indicated that they could function as dual binding site acetylcholinesterase inhibitors, binding to both the peripheral anionic site and active site. The data from in vitro experiments show that the most active compounds exhibit affinity toward acetylcholinesterase within a nanomolar range, with selectivity for acetylcholinesterase over butyrylcholinesterase reaching four orders of magnitude. In vivo biological assays demonstrated the potency of these compounds in the treatment of memory impairment using an animal model of Alzheimer disease.


Asunto(s)
Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Uracilo/química , Compuestos de Amonio/química , Animales , Aniones , Conducta Animal , Sitios de Unión , Barrera Hematoencefálica/efectos de los fármacos , Dominio Catalítico , Modelos Animales de Enfermedad , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Aprendizaje por Laberinto , Ratones , Simulación del Acoplamiento Molecular , Escopolamina , Uracilo/análogos & derivados
14.
Eur J Med Chem ; 185: 111787, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675511

RESUMEN

New uncharged conjugates of 6-methyluracil derivatives with imidazole-2-aldoxime and 1,2,4-triazole-3-hydroxamic acid units were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. Using paraoxon (POX) as a model organophosphate, it was shown that 6-methyluracil derivatives linked with hydroxamic acid are able to reactivate POX-inhibited human acetylcholinesterase (AChE) in vitro. The reactivating efficacy of one compound (5b) is lower than that of pyridinium-2-aldoxime (2-PAM). Meanwhile, unlike 2-PAM, in vivo study showed that the lead compound 5b is able: (1) to reactivate POX-inhibited AChE in the brain; (2) to decrease death of neurons and, (3) to prevent memory impairment in rat model of POX-induced neurodegeneration.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Ácidos Hidroxámicos/farmacología , Paraoxon/antagonistas & inhibidores , Uracilo/análogos & derivados , Animales , Encéfalo/enzimología , Relación Dosis-Respuesta a Droga , Humanos , Ácidos Hidroxámicos/química , Ligandos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Paraoxon/farmacología , Paraoxon/toxicidad , Teoría Cuántica , Ratas , Ratas Wistar , Relación Estructura-Actividad , Uracilo/síntesis química , Uracilo/química , Uracilo/farmacología
15.
ChemMedChem ; 10(11): 1863-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26412714

RESUMEN

Novel 6-methyluracil derivatives with ω-(substituted benzylethylamino)alkyl chains at the nitrogen atoms of the pyrimidine ring were designed and synthesized. The numbers of methylene groups in the alkyl chains were varied along with the electron-withdrawing substituents on the benzyl rings. The compounds are mixed-type reversible inhibitors of cholinesterases, and some of them show remarkable selectivity for human acetylcholinesterase (hAChE), with inhibitory potency in the nanomolar range, more than 10,000-fold higher than that for human butyrylcholinesterase (hBuChE). Molecular modeling studies indicate that these compounds are bifunctional AChE inhibitors, spanning the enzyme active site gorge and binding to its peripheral anionic site (PAS). In vivo experiments show that the 6-methyluracil derivatives are able to penetrate the blood-brain barrier (BBB), inhibiting brain-tissue AChE. The most potent AChE inhibitor, 3 d (1,3-bis[5-(o-nitrobenzylethylamino)pentyl]-6-methyluracil), was found to improve working memory in scopolamine and transgenic APP/PS1 murine models of Alzheimer's disease, and to significantly decrease the number and area of ß-amyloid peptide plaques in the brain.


Asunto(s)
Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Uracilo/análogos & derivados , Enfermedad de Alzheimer/enzimología , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/enzimología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Uracilo/síntesis química , Uracilo/química , Uracilo/farmacología
16.
Colloids Surf B Biointerfaces ; 111: 218-23, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23831589

RESUMEN

Tunable nanosystems based on a novel water insoluble pyrimidinic amphiphile are designed. pH dependent aggregates composed of protonated pyrimidinophane 1 are formed at pH<4, which undergo reversible transition to precipitate at neutral and basic conditions. The approach assuming the application of a helper nonionic surfactant Triton-X-100 (TX-100) is used in this work. Different models of a self-assembly were found depending on the molar ratio of components and solution pH. In the equimolar 1-TX-100 solution, mixed assemblies contributed by aggregated molecules of both TX-100 and cationic form of 1 are formed in acidic conditions. Upon alkalization, deprotonated pyrimidinophane molecules shift toward the micellar core. The assemblies undergo reversible precipitation after 4-5h, while the excess of TX-100 leads to the formation of highly stable mixed aggregates. The acidification-alkalization cycles followed by the aggregation/precipitation and the re-charging of aggregates can be multiply repeated. Surprisingly, stable mixed aggregates are also formed under the excess of pyrimidinophane in both the acidic and alkaline conditions, but at a certain component ratio. They are characterized by the highest micellization degree among all the systems studied. The low concentration threshold of these assemblies in alkali solution is probably due to their nonionic character.


Asunto(s)
Compuestos de Azabiciclo/química , Biomimética/métodos , Octoxinol/química , Pirimidinas/química , Tensoactivos/química , Timina/análogos & derivados , Difusión , Micelas , Espectroscopía de Protones por Resonancia Magnética , Soluciones , Electricidad Estática , Timina/química
17.
Eur J Med Chem ; 46(9): 4715-24, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21652122

RESUMEN

Reactions of pyrimidinophanes with two 6-methylthiocytosine and one 5(6)-alkyluracil moieties bridged with each other by polymethylene spacers with methyl or nonyl p-toluenesulfonate, p-toluenesulfonic acid, methanesulfonate and trifluorosulfonate afforded amphiphilic macrocyclic bis-p-toluene-, methane- and trifluorosulfonates. Despite the presence of several reaction centers in the initial pyrimidinophane molecules, protonation and methylation occurred only at the N(1) atom (with quaternization) of the 6-methylthiocytosine moieties. The bacteriostatic and fungistatic activity of the products was estimated. Macrocyclic tosylates exhibit a remarkable selectivity towards Staphylococcus aureus, with MIC values comparable with a reference drug. Bacteriostatic activity of the amphiphilic pyrimidinophanes depends on the size of the macrocycles, and the highest activity corresponds to definite lengths of polymethylene bridges. Besides, the antimicrobial activity of the screened pyrimidine derivatives depends on their topology. While macrocyclic tosylates are more active against bacteria than against fungi, acyclic tosylate with the same structural fragments shows a dramatical decrease of MIC towards mold and yeast with respect to the corresponding macrocycle. It is found that macrocyclic and acyclic tosylates in high dilutions decrease the extracellular lipase activity.


Asunto(s)
Antibacterianos/farmacología , Citosina/química , Pirimidinas/farmacología , Uracilo/química , Animales , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Espectrometría de Masa por Ionización de Electrospray
18.
ACS Appl Mater Interfaces ; 3(2): 402-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21261278

RESUMEN

A new macrocyclic bolaamphiphile with thiocytosine fragments in the molecule (B1) has been synthesized and advanced as perspective platform for the design of soft supramolecular systems. Strong concentration-dependent structural behavior is observed in the water-DMF (20% vol) solution of B1 as revealed by methods of tensiometry, conductometry, dynamic light scattering, and atomic force microscopy. Two breakpoints are observed in the surface tension isotherms. The first one, around 0.002 M, is identified as a critical micelle concentration (cmc), whereas the second critical concentration of 0.01 M is a turning point between the two models of the association involved. Large aggregates of ca. 200 nm are mostly formed beyond the cmc, whereas small micelle-like aggregates exist above 0.01 M. The growth of aggregates between these critical points occurs, resulting in a gel-like behavior. An unusual decrease in the solution pH with concentration takes place, which is assumed to originate from the steric hindrance around the B1 head groups. Because of controllable structural behavior, B1 is assumed to be a candidate for the development of biomimetic catalysts, nanocontainers, drug and gene carriers, etc.


Asunto(s)
Furanos/química , Compuestos Macrocíclicos/química , Nanoestructuras/química , Piridonas/química , Pirimidinonas/química , Conductometría , Dimetilformamida , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Micelas , Microscopía de Fuerza Atómica , Nanoestructuras/ultraestructura , Nanotecnología , Tamaño de la Partícula , Dispersión de Radiación , Tensión Superficial , Viscosidad , Agua
19.
J Phys Chem B ; 112(10): 3259-67, 2008 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-18284235

RESUMEN

Protonation (alkylation) sites of several thiopyrimidine derivatives were directly determined by 1H-15N (1H-13C) heteronuclear single quantum coherence/heteronuclear multiple bond correlation methods, and it was found that in all compounds, protonation (methylation) occurred at the N1 nitrogen. GIAO DFT chemical shifts were in full agreement with the determined tautomeric structures. According to ab initio calculations, the stability of the different protonated forms and methylated derivatives was favored due to thermodynamic control and not kinetic control.

20.
J Phys Chem B ; 111(51): 14152-62, 2007 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-18052275

RESUMEN

New amphiphilic pyrimidinic macrocycles (APMs) with two (APM-1) and three (APM-2) decyl tails have been synthesized by quaternization of the bridged N. Complex examination of the APM-based systems with the help of tensiometry, conductometry, dynamic light scattering, and UV and NMR spectroscopy provides evidence for their aggregation. Calculations based on surface tension isotherms and on packing parameter considerations make it possible to assume a lamellar packing of macrocycles when aggregating. Marked differences in the aggregation behavior of APM-1 and APM-2 have been found. The additives of polyethylenimine (PEI) exert little influence on the critical micelle concentration (cmc) of APM-1, while in the APM-2/PEI systems there occurs a pronounced decrease in the cmc and also a ca. 2-fold decrease in the surface area per molecule. The APM-based assemblies are explored as nanoreactors for the hydrolysis of O-alkyl O-p-nitrophenyl (chloromethyl)phosphonates (alkyl = ethyl, hexyl). The kinetic study reveals a minor rate effect of the APM-1-based systems. In the APM-2-based systems an acceleration of the hydrolysis of both phosphonates occurs as compared to the uncatalyzed process. Within the APM-2 --> APM-2/PEI --> APM-2/PEI/La(III) series, due to the cooperative contributions of the supramolecular, polymer, and homogeneous catalysis, an increase in the catalytic effect is observed from 30 times to 3 orders of magnitude as compared to that of the basic hydrolysis of the substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...