Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(19): 6121-6134, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37552253

RESUMEN

Microorganisms produce extracellular polymeric substances (EPS, also known as exopolysaccharides) of diverse composition and structure. The biochemical and biophysical properties of these biopolymers enable a wide range of industrial applications. EPS from cyanobacteria are particularly versatile as they incorporate a larger number and variety of building blocks and adopt more complex structures than EPS from other organisms. However, the genetic makeup and regulation of EPS biosynthetic pathways in cyanobacteria are poorly understood. Here, we measured the effect of changing culture media on titre and composition of EPS released by Synechocystis sp. PCC 6803, and we integrated this information with transcriptomic data. Across all conditions, daily EPS productivity of individual cells was highest in the early growth phase, but the total amount of EPS obtained from the cultures was highest in the later growth phases due to accumulation. Lowering the magnesium concentration in the media enhanced per-cell productivity but the produced EPS had a lower total sugar content. Levels of individual monosaccharides correlated with specific culture media components, e.g. xylose with sulfur, glucose and N-acetyl-galactosamine with NaCl. Comparison with RNA sequencing data suggests a Wzy-dependent biosynthetic pathway and a protective role for xylose-rich EPS. This multi-level analysis offers a handle to link individual genes to the dynamic modulation of a complex biopolymer. KEY POINTS: • Synechocystis exopolysaccharide amount and composition depends on culture condition • Production rate and sugar content can be modulated by Mg and S respectively • Wzy-dependent biosynthetic pathway and protective role proposed for xylose-rich EPS.


Asunto(s)
Synechocystis , Synechocystis/genética , Synechocystis/química , Xilosa/metabolismo , Biopolímeros/metabolismo , Monosacáridos/metabolismo , Polisacáridos Bacterianos/química
2.
ACS Synth Biol ; 7(12): 2833-2840, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30408953

RESUMEN

The genetic engineering of microbial cell factories is a sustainable alternative to the chemical synthesis of organic compounds. Successful metabolic engineering often depends on manipulating several enzymes, requiring multiple transformation steps and selection markers, as well as protein assembly and efficient substrate channeling. Naturally occurring fusion genes encoding two or more enzymatic functions may offer an opportunity to simplify the engineering process and to generate ready-made protein modules, but their functionality in heterologous systems remains to be tested. Here we show that heterologous expression of a fusion enzyme from the marine alga Micromonas pusilla, comprising a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase, leads to synthesis of mannitol by Escherichia coli and by the cyanobacterium Synechococcus sp. PCC 7002. Neither of the heterologous systems naturally produce this sugar alcohol, which is widely used in food, pharmaceutical, medical, and chemical industries. While the mannitol production rates obtained by single-gene manipulation were lower than those previously achieved after pathway optimization with multiple genes, our findings show that naturally occurring fusion proteins can offer simple building blocks for the assembly and optimization of recombinant metabolic pathways.


Asunto(s)
Chlorophyta/enzimología , Escherichia coli/metabolismo , Manitol/metabolismo , Ingeniería Metabólica/métodos , Synechococcus/metabolismo , Chlorophyta/genética , Monoéster Fosfórico Hidrolasas/genética , Plásmidos/genética , Plásmidos/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA