Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(7): 071002, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36867826

RESUMEN

We report an axion dark matter search at Dine-Fischler-Srednicki-Zhitnitskii sensitivity with the CAPP-12TB haloscope, assuming axions contribute 100% of the local dark matter density. The search excluded the axion-photon coupling g_{aγγ} down to about 6.2×10^{-16} GeV^{-1} over the axion mass range between 4.51 and 4.59 µeV at a 90% confidence level. The achieved experimental sensitivity can also exclude Kim-Shifman-Vainshtein-Zakharov axion dark matter that makes up just 13% of the local dark matter density. The CAPP-12TB haloscope will continue the search over a wide range of axion masses.

2.
Phys Rev Lett ; 130(9): 091602, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930919

RESUMEN

We report the results of an axion dark matter search over an axion mass range of 9.39-9.51 µeV. A flux-driven Josephson parametric amplifier (JPA) was added to the cryogenic receiver chain. A system noise temperature of as low as 200 mK was achieved, which is the lowest recorded noise among published axion cavity experiments with phase-insensitive JPA operation. In addition, we developed a two-stage scanning method which boosted the scan speed by 26%. As a result, a range of two-photon coupling in a plausible model for the QCD axion was excluded with an order of magnitude higher in sensitivity than existing limits.

3.
Sci Adv ; 8(8): eabm9928, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35196091

RESUMEN

The axion is a highly motivated elementary particle that could address two fundamental questions in physics-the strong charge-parity (CP) problem and the dark matter mystery. Experimental searches for this hypothetical particle started reaching theoretically interesting sensitivity levels, particularly in the micro-electron volt (gigahertz) region. They rely on microwave resonators in strong magnetic fields with signals read out by quantum noise limited amplifiers. Concurrently, there have been intensive experimental efforts to widen the search range by devising various techniques and to enhance sensitivities by implementing advanced technologies. These orthogonal approaches will enable us to explore most of the parameter space for axions and axion-like particles within the next decades, with the 1- to 25-gigahertz frequency range to be conquered well within the first decade. We review the experimental aspects of axion physics and discuss the past, present, and future of the direct search programs.

4.
Nat Phys ; 17(12): 1396-1401, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966439

RESUMEN

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.

5.
Phys Rev Lett ; 126(19): 191802, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34047607

RESUMEN

The Center for Axion and Precision Physics Research at the Institute for Basic Science is searching for axion dark matter using ultralow temperature microwave resonators. We report the exclusion of the axion mass range 10.7126-10.7186 µeV with near Kim-Shifman-Vainshtein-Zakharov (KSVZ) coupling sensitivity and the range 10.16-11.37 µeV with about 9 times larger coupling at 90% confidence level. This is the first axion search result in these ranges. It is also the first with a resonator physical temperature of less than 40 mK.

6.
Phys Rev Lett ; 125(22): 221302, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33315449

RESUMEN

We present the first results of a search for invisible axion dark matter using a multiple-cell cavity haloscope. This cavity concept was proposed to provide a highly efficient approach to high-mass regions compared to the conventional multiple-cavity design, with larger detection volume, simpler detector setup, and a unique phase-matching mechanism. Searches with a double-cell cavity superseded previous reports for the axion-photon coupling over the mass range between 13.0 and 13.9 µeV. This result not only demonstrates the novelty of the cavity concept for high-mass axion searches, but also suggests it can make considerable contributions to the next-generation experiments.

7.
Phys Rev Lett ; 119(10): 107003, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949163

RESUMEN

Interfacial phonons between iron-based superconductors (FeSCs) and perovskite substrates have received considerable attention due to the possibility of enhancing preexisting superconductivity. Using scanning tunneling spectroscopy, we studied the correlation between superconductivity and e-ph interaction with interfacial phonons in an iron-based superconductor Sr_{2}VO_{3}FeAs (T_{c}≈33 K) made of alternating FeSC and oxide layers. The quasiparticle interference measurement over regions with systematically different average superconducting gaps due to the e-ph coupling locally modulated by O vacancies in the VO_{2} layer, and supporting self-consistent momentum-dependent Eliashberg calculations provide a unique real-space evidence of the forward-scattering interfacial phonon contribution to the total superconducting pairing.

8.
Phys Rev Lett ; 96(21): 214802, 2006 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16803241

RESUMEN

A "resonance method" of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles' velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...