Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(11): 2879-2886, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260494

RESUMEN

Sintered agglomerate of synthetic mesoporous silica nanoparticles (MSNs) is an architected geomaterial that provides confinement-mediated flow and transport properties of fluids needed for environmental research such as geological subsurface energy storage or carbon capture. The design of those properties can be guided by numerical simulations but is hindered by the lack of method to characterize the permeable pores within MSNs due to pore size. This work uses the advances of an Individual Particle cryogenic transmission Electron Tomography (IPET) technique to obtain detailed 3D morphology of monodispersed MSNs with diameters below 50 nm. The 3D reconstructed density-maps show the diameters of those MSNs vary from 35-46 nm, containing connected intraparticle pores in diameter of 2-20 nm with a mean of 9.2 ± 3 nm, which is comparable to the mean interparticle pore diameters in sintered agglomerate. The characterization of the pore shape and dimensions provides key information for estimating the flow and transport properties of fluids within the sintered agglomerate of those MSNs and for modeling the atomic MSN structures needed for pore-fluid simulations.

2.
Langmuir ; 38(26): 8135-8152, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35731695

RESUMEN

A modified many-body dissipative particle dynamics (mDPD) model is rigorously calibrated to achieve realistic fluid-fluid/solid interphase properties and applied for mesoscale flow simulations to elucidate the transport mechanisms of heptane liquid and water, respectively, through pore networks formed by packed silica nanoparticles with a uniform diameter of 30 nm. Two million CPU core hours were used to complete the simulation studies. Results show reduction of permeability by 54-64% in heptane flow and by 88-91% in water flow, respectively, compared to the Kozeny-Carman equation. In these nanopores, a large portion of the fluids are in the near-wall regions and thus not mobile due to the confinement effect, resulting in reduced hydraulic conductivity. Moreover, intense oscillations in the calculated flow velocities also indicate the confinement effect that contests the external driven force to flow. The generic form of Darcy's law is considered valid for flow through homogeneous nanopore networks, while permeability depends collectively on pore size and surface wettability. This fluid-permeability dependency is unique to flow in nanopores. In addition, potential dependence of permeability on pore connectivity is observed when the porosity remains the same in different core specimens.

3.
J Colloid Interface Sci ; 615: 236-247, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35144227

RESUMEN

Near monodisperse mesoporous silica nanoparticles (MSN) represent a promising and rapidly developing type of mesoporous silica materials; however, the vast data on their synthesis remains unorganized and ill-understood. We systematically studied the formation of MSN under basic and neutral conditions using various temperatures, CTAB concentrations, hydrolyzing agents (triethanolamine, ammonia, phosphate buffers), and media with different colloidal stabilization properties (with ethanol as a cosolvent and monovalent salts). In the typical conditions for the preparation of stable MSN colloids, the particle size was controlled by colloidal stabilization by the medium (solvent type, ionic strength, and surfactant concentration) in agreement with the "aggregative growth" mechanism, rather than by solely the hydrolysis and condensation rates conventionally used for data interpretation in the classical nucleation theory. Medium properties (pH, ion types and concentration, polarity) also defined the efficiency of silica-surfactant cooperative self-assembly, which directly affected the porosity, mesopore size and pore wall thickness. Interestingly, this traditional silica-surfactant route showed a limited effect on the particle size, emphasizing the dominating role of colloidal stabilization in the studied reaction conditions. In situ pH measurements showed that every reaction medium has unique pH evolution profiles depending on the buffer capacity, hydrolysis and condensation rates. Reaction systems that fail to maintain the working pH can lead to non-porous products or undesired particle morphology and size distribution. The established particle formation mechanism allowed us to formulate comprehensive guidelines for preparing relatively concentrated colloids of near monodisperse (PDI 5-15%) mesoporous 30-700 nm silica spheres with variable porosity and mesopore size. These findings will be particularly useful in designing new mesoporous silica-containing materials for biomedical applications.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Nanopartículas/química , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/química , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...