Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Adv Cancer Res ; 161: 119-190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39032949

RESUMEN

Prostate cancer is a significant health problem in the United States. It is remarkably heterogenous, ranging from slow growing disease amenable to active surveillance to highly aggressive forms requiring active treatments. Therefore, being able to precisely determine the nature of disease and appropriately match patients to available and/or novel therapeutics is crucial to improve patients' overall outcome and quality of life. Recently small extracellular vesicles (sEVs), a subset of nanoscale membranous vesicles secreted by various cells, have emerged as important analytes for liquid biopsy and promising vehicles for drug delivery. sEVs contain various biomolecules such as genetic material, proteins, and lipids that recapitulate the characteristics and state of their donor cells. The application of existing and newly developed technologies has resulted in an increased depth of knowledge about biophysical structures, biogenesis, and functions of sEVs. In prostate cancer patients, tumor-derived sEVs can be isolated from biofluids, commonly urine and blood. They mediate intercellular signaling within the tumor microenvironment and distal organ-specific sites, supporting cancer initiation, progression, and metastasis. A mounting body of evidence suggests that sEV components can be potent biomarkers for prostate cancer diagnosis, prognosis, and prediction of disease progression and treatment response. Due to enhanced circulation stability and bio-barrier permeability, sEVs can be also used as effective drug delivery carriers to improve the efficacy and specificity of anti-tumor therapies. This review discusses recent studies on sEVs in prostate cancer and is focused on their role as biomarkers and drug delivery vehicles in the clinical management of prostate cancer.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Vesículas Extracelulares/metabolismo , Masculino , Biomarcadores de Tumor/metabolismo , Animales , Microambiente Tumoral
2.
Nat Commun ; 15(1): 5069, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871730

RESUMEN

Urine is a complex biofluid that reflects both overall physiologic state and the state of the genitourinary tissues through which it passes. It contains both secreted proteins and proteins encapsulated in tissue-derived extracellular vesicles (EVs). To understand the population variability and clinical utility of urine, we quantified the secreted and EV proteomes from 190 men, including a subset with prostate cancer. We demonstrate that a simple protocol enriches prostatic proteins in urine. Secreted and EV proteins arise from different subcellular compartments. Urinary EVs are faithful surrogates of tissue proteomes, but secreted proteins in urine or cell line EVs are not. The urinary proteome is longitudinally stable over several years. It can accurately and non-invasively distinguish malignant from benign prostatic lesions and can risk-stratify prostate tumors. This resource quantifies the complexity of the urinary proteome and reveals the synergistic value of secreted and EV proteomes for translational and biomarker studies.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Próstata , Proteoma , Humanos , Neoplasias de la Próstata/orina , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Masculino , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Anciano , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/metabolismo , Proteómica/métodos , Persona de Mediana Edad , Próstata/metabolismo , Próstata/patología , Línea Celular Tumoral
3.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712029

RESUMEN

Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrate and accumulate in the prostate lumen where they differentiate into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify the epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T+E2) and harvested the ventral prostates two weeks later for scRNA-seq analysis, or performed sham surgery. We identified Ear2+ and Cd72+ macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1+ resident macrophage population did not change. In addition, an Spp1+ foam cell cluster was almost exclusively found in T+E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelial-derived Cxcl17, a known monocyte attractant, in T+E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that respond to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.

4.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546794

RESUMEN

Urine is a complex biofluid that reflects both overall physiologic state and the state of the genitourinary tissues through which it passes. It contains both secreted proteins and proteins encapsulated in tissue-derived extracellular vesicles (EVs). To understand the population variability and clinical utility of urine, we quantified the secreted and EV proteomes from 190 men, including a subset with prostate cancer. We demonstrate that a simple protocol enriches prostatic proteins in urine. Secreted and EV proteins arise from different subcellular compartments. Urinary EVs are faithful surrogates of tissue proteomes, but secreted proteins in urine or cell line EVs are not. The urinary proteome is longitudinally stable over several years. It can accurately and non-invasively distinguish malignant from benign prostatic lesions, and can risk-stratify prostate tumors. This resource quantifies the complexity of the urinary proteome, and reveals the synergistic value of secreted and EV proteomes for translational and biomarker studies.

5.
Bioinform Adv ; 3(1): vbad025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36922981

RESUMEN

Summary: We present promor, a comprehensive, user-friendly R package that streamlines label-free quantification proteomics data analysis and building machine learning-based predictive models with top protein candidates. Availability and implementation: promor is freely available as an open source R package on the Comprehensive R Archive Network (CRAN) (https://CRAN.R-project.org/package=promor) and distributed under the Lesser General Public License (version 2.1 or later). Development version of promor is maintained on GitHub (https://github.com/caranathunge/promor) and additional documentation and tutorials are provided on the package website (https://caranathunge.github.io/promor/). Supplementary information: Supplementary data are available at Bioinformatics Advances online.

6.
J Extracell Vesicles ; 11(2): e12184, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35119778

RESUMEN

The isolation and subsequent molecular analysis of extracellular vesicles (EVs) derived from patient samples is a widely used strategy to understand vesicle biology and to facilitate biomarker discovery. Expressed prostatic secretions in urine are a tumor proximal fluid that has received significant attention as a source of potential prostate cancer (PCa) biomarkers for use in liquid biopsy protocols. Standard EV isolation methods like differential ultracentrifugation (dUC) co-isolate protein contaminants that mask lower-abundance proteins in typical mass spectrometry (MS) protocols. Further complicating the analysis of expressed prostatic secretions, uromodulin, also known as Tamm-Horsfall protein (THP), is present at high concentrations in urine. THP can form polymers that entrap EVs during purification, reducing yield. Disruption of THP polymer networks with dithiothreitol (DTT) can release trapped EVs, but smaller THP fibres co-isolate with EVs during subsequent ultracentrifugation. To resolve these challenges, we describe here a dUC method that incorporates THP polymer reduction and alkaline washing to improve EV isolation and deplete both THP and other common protein contaminants. When applied to human expressed prostatic secretions in urine, we achieved relative enrichment of known prostate and prostate cancer-associated EV-resident proteins. Our approach provides a promising strategy for global proteomic analyses of urinary EVs.


Asunto(s)
Vesículas Extracelulares , Proteómica , Vesículas Extracelulares/química , Humanos , Masculino , Espectrometría de Masas , Próstata , Proteómica/métodos , Ultracentrifugación
7.
Front Chem ; 9: 734280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646811

RESUMEN

Expressed prostatic secretions (EPS), also called post digital rectal exam urines, are proximal fluids of the prostate that are widely used for diagnostic and prognostic assays for prostate cancer. These fluids contain an abundant number of glycoproteins and extracellular vesicles secreted by the prostate gland, and the ability to detect changes in their N-glycans composition as a reflection of disease state represents potential new biomarker candidates. Methods to characterize these N-glycan constituents directly from clinical samples in a timely manner and with minimal sample processing requirements are not currently available. In this report, an approach is described to directly profile the N-glycan constituents of EPS urine samples, prostatic fluids and urine using imaging mass spectrometry for detection. An amine reactive slide is used to immobilize glycoproteins from a few microliters of spotted samples, followed by peptide N-glycosidase digestion. Over 100 N-glycan compositions can be detected with this method, and it works with urine, urine EPS, prostatic fluids, and urine EPS-derived extracellular vesicles. A comparison of the N-glycans detected from the fluids with tissue N-glycans from prostate cancer tissues was done, indicating a subset of N-glycans present in fluids derived from the gland lumens. The developed N-glycan profiling is amenable to analysis of larger clinical cohorts and adaptable to other biofluids.

8.
Cancers (Basel) ; 13(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680183

RESUMEN

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has provided some of the most in-depth analyses of the phenotypes of human tumors ever constructed. Today, the majority of proteomic data analysis is still performed using software housed on desktop computers which limits the number of sequence variants and post-translational modifications that can be considered. The original CPTAC studies limited the search for PTMs to only samples that were chemically enriched for those modified peptides. Similarly, the only sequence variants considered were those with strong evidence at the exon or transcript level. In this multi-institutional collaborative reanalysis, we utilized unbiased protein databases containing millions of human sequence variants in conjunction with hundreds of common post-translational modifications. Using these tools, we identified tens of thousands of high-confidence PTMs and sequence variants. We identified 4132 phosphorylated peptides in nonenriched samples, 93% of which were confirmed in the samples which were chemically enriched for phosphopeptides. In addition, our results also cover 90% of the high-confidence variants reported by the original proteogenomics study, without the need for sample specific next-generation sequencing. Finally, we report fivefold more somatic and germline variants that have an independent evidence at the peptide level, including mutations in ERRB2 and BCAS1. In this reanalysis of CPTAC proteomic data with cloud computing, we present an openly available and searchable web resource of the highest-coverage proteomic profiling of human tumors described to date.

9.
Nat Rev Urol ; 18(12): 707-724, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34453155

RESUMEN

Prostate cancer is the second most frequently diagnosed non-skin cancer in men worldwide. Patient outcomes are remarkably heterogeneous and the best existing clinical prognostic tools such as International Society of Urological Pathology Grade Group, pretreatment serum PSA concentration and T-category, do not accurately predict disease outcome for individual patients. Thus, patients newly diagnosed with prostate cancer are often overtreated or undertreated, reducing quality of life and increasing disease-specific mortality. Biomarkers that can improve the risk stratification of these patients are, therefore, urgently needed. The ideal biomarker in this setting will be non-invasive and affordable, enabling longitudinal evaluation of disease status. Prostatic secretions, urine and blood can be sources of biomarker discovery, validation and clinical implementation, and mass spectrometry can be used to detect and quantify proteins in these fluids. Protein biomarkers currently in use for diagnosis, prognosis and relapse-monitoring of localized prostate cancer in fluids remain centred around PSA and its variants, and opportunities exist for clinically validating novel and complimentary candidate protein biomarkers and deploying them into the clinic.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Detección Precoz del Cáncer/métodos , Espectrometría de Masas , Neoplasias de la Próstata/diagnóstico , Proteómica/métodos , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/metabolismo , Medición de Riesgo
11.
Arterioscler Thromb Vasc Biol ; 39(10): 2168-2191, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31434495

RESUMEN

OBJECTIVE: Endothelial cells (EC) in obese adipose tissue (AT) are exposed to a chronic proinflammatory environment that may induce a mesenchymal-like phenotype and altered function. The objective of this study was to establish whether endothelial-to-mesenchymal transition (EndoMT) is present in human AT in obesity and to investigate the effect of such transition on endothelial function and the endothelial particulate secretome represented by extracellular vesicles (EV). Approach and Results: We identified EndoMT in obese human AT depots by immunohistochemical co-localization of CD31 or vWF and α-SMA (alpha-smooth muscle actin). We showed that AT EC exposed in vitro to TGF-ß (tumor growth factor-ß), TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-γ) undergo EndoMT with progressive loss of endothelial markers. The phenotypic change results in failure to maintain a tight barrier in culture, increased migration, and reduced angiogenesis. EndoMT also reduced mitochondrial oxidative phosphorylation and glycolytic capacity of EC. EVs produced by EC that underwent EndoMT dramatically reduced angiogenic capacity of the recipient naïve ECs without affecting their migration or proliferation. Proteomic analysis of EV produced by EC in the proinflammatory conditions showed presence of several pro-inflammatory and immune proteins along with an enrichment in angiogenic receptors. CONCLUSIONS: We demonstrated the presence of EndoMT in human AT in obesity. EndoMT in vitro resulted in production of EV that transferred some of the functional and metabolic features to recipient naïve EC. This result suggests that functional and molecular features of EC that underwent EndoMT in vivo can be disseminated in a paracrine or endocrine fashion and may induce endothelial dysfunction in distant vascular beds.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Transición Epitelial-Mesenquimal/genética , Neovascularización Patológica/genética , Obesidad/genética , Factor de Crecimiento Transformador beta1/farmacología , Tejido Adiposo/metabolismo , Análisis de Varianza , Biomarcadores/metabolismo , Estudios de Casos y Controles , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Citometría de Flujo/métodos , Humanos , Obesidad/fisiopatología , Proteómica/métodos
12.
Mol Cancer Res ; 16(4): 669-681, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29330297

RESUMEN

Prostate cancer afflicts 1 in 7 men and is the second leading cause of male cancer-related deaths in the United States. MicroRNAs (miRNAs), an extensive class of approximately 22 nucleotide noncoding RNAs, are often aberrantly expressed in tissues and fluids from prostate cancer patients, but the mechanisms of how specific miRNAs regulate prostate tumorigenesis and metastasis are poorly understood. Here, miR-888 was identified as a novel prostate factor that promotes proliferation and migration. miR-888 resides within a genomic cluster of 7 miRNA genes (mir-892c, mir-890, mir-888, mir-892a, mir-892b, mir-891b, mir-891a) on human chromosome Xq27.3. Moreover, as miR-888 maps within HPCX1, a locus associated with susceptibility and/or hereditary prostate cancer, it was hypothesized that additional miRNA cluster members also play functional roles in the prostate. Expression analysis determined that cluster members were similarly elevated in metastatic PC3-ML prostate cells and their secreted exosomes, as well as enriched in expressed prostatic secretions urine-derived exosomes obtained from clinical patients with high-grade prostate cancer. In vitro assays revealed that miR-888 cluster members selectively modulated PC3-derived and LNCaP cell proliferation, migration, invasion, and colony formation. Mouse xenograft studies verified miR-888 and miR-891a as pro-oncogenic factors that increased prostate tumor growth in vivo Further analysis validated RBL1, KLF5, SMAD4, and TIMP2 as direct miR-888 targets and that TIMP2 is also coregulated by miR-891a. This study provides the first comprehensive analysis of the entire miR-888 cluster and reveals biological insight.Implications: This work reveals a complex noncoding RNA network in the prostate that could be developed as effective diagnostic and therapeutic tools for advanced prostate cancer. Mol Cancer Res; 16(4); 669-81. ©2018 AACR.


Asunto(s)
Biomarcadores de Tumor/genética , Exosomas/genética , Redes Reguladoras de Genes , MicroARNs/genética , Neoplasias de la Próstata/patología , Animales , Movimiento Celular , Proliferación Celular , Mapeo Cromosómico , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Familia de Multigenes , Trasplante de Neoplasias , Células PC-3 , Neoplasias de la Próstata/genética
13.
Radiat Res ; 187(3): 287-297, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28156212

RESUMEN

Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.


Asunto(s)
Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Hierro/efectos adversos , Proteoma/metabolismo , Memoria Espacial/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar
14.
Nat Commun ; 7: 11906, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27350604

RESUMEN

Biomarkers are rapidly gaining importance in personalized medicine. Although numerous molecular signatures have been developed over the past decade, there is a lack of overlap and many biomarkers fail to validate in independent patient cohorts and hence are not useful for clinical application. For these reasons, identification of novel and robust biomarkers remains a formidable challenge. We combine targeted proteomics with computational biology to discover robust proteomic signatures for prostate cancer. Quantitative proteomics conducted in expressed prostatic secretions from men with extraprostatic and organ-confined prostate cancers identified 133 differentially expressed proteins. Using synthetic peptides, we evaluate them by targeted proteomics in a 74-patient cohort of expressed prostatic secretions in urine. We quantify a panel of 34 candidates in an independent 207-patient cohort. We apply machine-learning approaches to develop clinical predictive models for prostate cancer diagnosis and prognosis. Our results demonstrate that computationally guided proteomics can discover highly accurate non-invasive biomarkers.


Asunto(s)
Biomarcadores/orina , Neoplasias de la Próstata/orina , Humanos , Biopsia Líquida , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Próstata/patología , Neoplasias de la Próstata/patología , Proteoma , Proteómica
15.
Oncotarget ; 6(41): 43743-58, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26497208

RESUMEN

CUB-domain-containing protein 1 (CDCP1) is a trans-membrane protein regulator of cell adhesion with a potent pro-migratory function in tumors. Given that proteolytic cleavage of the ectodomain correlates with outside-in oncogenic signaling, we characterized glycosylation in the context of cellular processing and expression of CDCP1 in prostate cancer. We detected 135 kDa full-length and proteolytic processed 70 kDa species in a panel of PCa cell models. The relative expression of full-length CDCP1 correlated with the metastatic potential of syngeneic cell models and an increase in surface membrane expression of CDCP1 was observed in tumor compared to adjacent normal prostate tissues. We demonstrated that glycosylation of CDCP1 is a prerequisite for protein stability and plasma membrane localization, and that the expression level and extent of N-glycosylation of CDCP1 correlated with metastatic status. Interestingly, complex N-linked glycans with sialic acid chains were restricted to the N-terminal half of the ectodomain and absent in the truncated species. Characterization of the extracellular expression of CDCP1 identified novel circulating forms and revealed that extracellular vesicles provide additional processing pathways. Employing immunoaffinity mass spectrometry, we detected elevated levels of circulating CDCP1 in patient urine with high-risk disease. Our results establish that differential glycosylation, cell surface presentation and extracellular expression of CDCP1 are hallmarks of PCa progression.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/patología , Antígenos de Neoplasias , Línea Celular Tumoral , Progresión de la Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glicosilación , Humanos , Immunoblotting , Inmunohistoquímica , Masculino , Espectrometría de Masas , Neoplasias de la Próstata/metabolismo , Análisis de Matrices Tisulares
16.
PLoS Pathog ; 10(9): e1004343, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25211330

RESUMEN

Hepatitis B virus infection (HBV) is a major risk factor for the development of hepatocellular carcinoma. HBV replicates from a covalently closed circular DNA (cccDNA) that remains as an episome within the nucleus of infected cells and serves as a template for the transcription of HBV RNAs. The regulatory protein HBx has been shown to be essential for cccDNA transcription in the context of infection. Here we identified Spindlin1, a cellular Tudor-domain protein, as an HBx interacting partner. We further demonstrated that Spindlin1 is recruited to the cccDNA and inhibits its transcription in the context of infection. Spindlin1 knockdown induced an increase in HBV transcription and in histone H4K4 trimethylation at the cccDNA, suggesting that Spindlin1 impacts on epigenetic regulation. Spindlin1-induced transcriptional inhibition was greater for the HBV virus deficient for the expression of HBx than for the HBV WT virus, suggesting that HBx counteracts Spindlin1 repression. Importantly, we showed that the repressive role of Spindlin1 is not limited to HBV transcription but also extends to other DNA virus that replicate within the nucleus such as Herpes Simplex Virus type 1 (HSV-1). Taken together our results identify Spindlin1 as a critical component of the intrinsic antiviral defense and shed new light on the function of HBx in HBV infection.


Asunto(s)
Antivirales/metabolismo , Carcinoma Hepatocelular/inmunología , Proteínas de Ciclo Celular/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Northern Blotting , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Proteínas de Ciclo Celular/genética , Células Cultivadas , ADN Viral/genética , Hepatitis B/metabolismo , Hepatitis B/virología , Herpes Simple/metabolismo , Herpes Simple/virología , Humanos , Inmunoprecipitación , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Proteínas Asociadas a Microtúbulos/genética , Fosfoproteínas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Replicación Viral
17.
Cell Cycle ; 13(2): 227-39, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24200968

RESUMEN

MicroRNAs (MiRNAs) are a growing class of small non-coding RNAs that exhibit widespread dysregulation in prostate cancer. We profiled miRNA expression in syngeneic human prostate cancer cell lines that differed in their metastatic potential in order to determine their role in aggressive prostate cancer. miR-888 was the most differentially expressed miRNA observed in human metastatic PC3-ML cells relative to non-invasive PC3-N cells, and its levels were higher in primary prostate tumors from cancer patients, particularly those with seminal vesicle invasion. We also examined a novel miRNA-based biomarker source called expressed prostatic secretions in urine (EPS urine) for miR-888 expression and found that its levels were preferentially elevated in prostate cancer patients with high-grade disease. These expression studies indicated a correlation for miR-888 in disease progression. We next tested how miR-888 regulated cancer-related pathways in vitro using human prostate cancer cell lines. Overexpression of miR-888 increased proliferation and migration, and conversely inhibition of miR-888 activity blocked these processes. miR-888 also increased colony formation in PC3-N and LNCaP cells, supporting an oncogenic role for this miRNA in the prostate. Our data indicates that miR-888 functions to promote prostate cancer progression and can suppress protein levels of the tumor suppressor genes RBL1 and SMAD4. This miRNA holds promise as a diagnostic tool using an innovative prostatic fluid source as well as a therapeutic target for aggressive prostate cancer.


Asunto(s)
Biomarcadores de Tumor/orina , Movimiento Celular , Proliferación Celular , MicroARNs/orina , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Humanos , Masculino , MicroARNs/metabolismo , Clasificación del Tumor , Próstata/patología , Neoplasias de la Próstata/patología , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo
18.
J Virol ; 88(5): 2927-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24371063

RESUMEN

Vesicular stomatitis virus (VSV) is an oncolytic virus that induces cancer cell death through activation of the apoptotic pathway. Intrinsic resistance to oncolysis is found in some cell lines and many primary tumors as a consequence of residual innate immunity to VSV. In resistant-tumor models, VSV oncolytic potential can be reversibly stimulated by combination with epigenetic modulators, such as the histone deacetylase inhibitor vorinostat. Based on this reversible effect of vorinostat, we reasoned that critical host genes involved in oncolysis may likewise be reversibly regulated by vorinostat. A transcriptome analysis in prostate cancer PC3 cells identified a subset of NF-κB target genes reversibly regulated by vorinostat, as well as a group of interferon (IFN)-stimulated genes (ISGs). Consistent with the induction of NF-κB target genes, vorinostat-mediated enhancement of VSV oncolysis increased hyperacetylation of NF-κB RELA/p65. Additional bioinformatics analysis revealed that NF-κB signaling also increased the expression of several autophagy-related genes. Kinetically, autophagy preceded apoptosis, and apoptosis was observed only when cells were treated with both VSV and vorinostat. VSV replication and cell killing were suppressed when NF-κB signaling was inhibited using pharmacological or genetic approaches. Inhibition of autophagy by 3-methyladenine (3-MA) enhanced expression of ISGs, and either 3-MA treatment or genetic ablation of the autophagic marker Atg5 decreased VSV replication and oncolysis. Together, these data demonstrate that vorinostat stimulates NF-κB activity in a reversible manner via modulation of RELA/p65 signaling, leading to induction of autophagy, suppression of the IFN-mediated response, and subsequent enhancement of VSV replication and apoptosis.


Asunto(s)
Autofagia , Inhibidores de Histona Desacetilasas/farmacología , FN-kappa B/metabolismo , Virus Oncolíticos/efectos de los fármacos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Acetilación , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Cromatina/metabolismo , Análisis por Conglomerados , Técnicas de Silenciamiento del Gen , Humanos , Ácidos Hidroxámicos/farmacología , Masculino , Ratones , FN-kappa B/antagonistas & inhibidores , Viroterapia Oncolítica , Virus Oncolíticos/genética , Neoplasias de la Próstata/terapia , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Transcriptoma , Virus de la Estomatitis Vesicular Indiana/genética , Replicación Viral , Vorinostat
19.
J Virol ; 87(21): 11516-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23966382

RESUMEN

SAMHD1 is a host protein responsible, at least in part, for the inefficient infection of dendritic, myeloid, and resting T cells by HIV-1. Interestingly, HIV-2 and SIVsm viruses are able to counteract SAMHD1 by targeting it for proteasomal degradation using their Vpx proteins. It has been proposed that SAMHD1 is a dGTP-dependent deoxynucleoside triphosphohydrolase (dNTPase) that restricts HIV-1 by reducing cellular dNTP levels to below that required for reverse transcription. However, nothing is known about SAMHD1 posttranslational modifications and their potential role in regulating SAMHD1 function. We used (32)P labeling and immunoblotting with phospho-specific antibodies to identify SAMHD1 as a phosphoprotein. Several amino acids in SAMHD1 were identified to be sites of phosphorylation using direct mass spectrometry. Mutation of these residues to alanine to prevent phosphorylation or to glutamic acid to mimic phosphorylation had no effect on the nuclear localization of SAMHD1 or its sensitivity to Vpx-mediated degradation. Furthermore, neither alanine nor glutamic acid substitutions had a significant effect on SAMHD1 dNTPase activity in an in vitro assay. Interestingly, however, we found that a T592E mutation, mimicking constitutive phosphorylation at a main phosphorylation site, severely affected the ability of SAMHD1 to restrict HIV-1 in a U937 cell-based restriction assay. In contrast, a T592A mutant was still capable of restricting HIV-1. These results indicate that SAMHD1 phosphorylation may be a negative regulator of SAMHD1 restriction activity. This conclusion is supported by our finding that SAMHD1 is hyperphosphorylated in monocytoid THP-1 cells under nonrestrictive conditions.


Asunto(s)
VIH-1/inmunología , Proteínas de Unión al GTP Monoméricas/inmunología , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleósido-Trifosfatasa/inmunología , Nucleósido-Trifosfatasa/metabolismo , Procesamiento Proteico-Postraduccional , Línea Celular , Análisis Mutacional de ADN , Humanos , Immunoblotting , Marcaje Isotópico , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Radioisótopos de Fósforo/metabolismo , Fosforilación , Proteína 1 que Contiene Dominios SAM y HD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA