Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35808427

RESUMEN

Mosquito-borne diseases can pose serious risks to human health. Therefore, mosquito surveillance and control programs are essential for the wellbeing of the community. Further, human-assisted mosquito surveillance and population mapping methods are time-consuming, labor-intensive, and require skilled manpower. This work presents an AI-enabled mosquito surveillance and population mapping framework using our in-house-developed robot, named 'Dragonfly', which uses the You Only Look Once (YOLO) V4 Deep Neural Network (DNN) algorithm and a two-dimensional (2D) environment map generated by the robot. The Dragonfly robot was designed with a differential drive mechanism and a mosquito trapping module to attract mosquitoes in the environment. The YOLO V4 was trained with three mosquito classes, namely Aedes aegypti, Aedes albopictus, and Culex, to detect and classify the mosquito breeds from the mosquito glue trap. The efficiency of the mosquito surveillance framework was determined in terms of mosquito classification accuracy and detection confidence level on offline and real-time field tests in a garden, drain perimeter area, and covered car parking area. The experimental results show that the trained YOLO V4 DNN model detects and classifies the mosquito classes with an 88% confidence level on offline mosquito test image datasets and scores an average of an 82% confidence level on the real-time field trial. Further, to generate the mosquito population map, the detection results are fused in the robot's 2D map, which will help to understand mosquito population dynamics and species distribution.


Asunto(s)
Aedes , Culex , Robótica , Animales , Mosquitos Vectores
2.
Sensors (Basel) ; 22(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35890893

RESUMEN

Cebrenus Rechenburgi, a member of the huntsman spider family have inspired researchers to adopt different locomotion modes in reconfigurable robotic development. Object-of-interest perception is crucial for such a robot to provide fundamental information on the traversed pathways and guide its locomotion mode transformation. Therefore, we present a object-of-interest perception in a reconfigurable rolling-crawling robot and identifying appropriate locomotion modes. We demonstrate it in Scorpio, our in-house developed robot with two locomotion modes: rolling and crawling. We train the locomotion mode recognition framework, named Pyramid Scene Parsing Network (PSPNet), with a self-collected dataset composed of two categories paths, unobstructed paths (e.g., floor) for rolling and obstructed paths (e.g., with person, railing, stairs, static objects and wall) for crawling, respectively. The efficiency of the proposed framework has been validated with evaluation metrics in offline and real-time field trial tests. The experiment results show that the trained model can achieve an mIOU score of 72.28 and 70.63 in offline and online testing, respectively for both environments. The proposed framework's performance is compared with semantic framework (HRNet and Deeplabv3) where the proposed framework outperforms in terms of mIOU and speed. Furthermore, the experimental results has revealed that the robot's maneuverability is stable, and the proposed framework can successfully determine the appropriate locomotion modes with enhanced accuracy during complex pathways.


Asunto(s)
Robótica , Humanos , Locomoción , Percepción , Robótica/métodos
3.
Sensors (Basel) ; 21(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34770593

RESUMEN

Human visual inspection of drains is laborious, time-consuming, and prone to accidents. This work presents an AI-enabled robot-assisted remote drain inspection and mapping framework using our in-house developed reconfigurable robot Raptor. The four-layer IoRT serves as a bridge between the users and the robots, through which seamless information sharing takes place. The Faster RCNN ResNet50, Faster RCNN ResNet101, and Faster RCNN Inception-ResNet-v2 deep learning frameworks were trained using a transfer learning scheme with six typical concrete defect classes and deployed in an IoRT framework remote defect detection task. The efficiency of the trained CNN algorithm and drain inspection robot Raptor was evaluated through various real-time drain inspection field trials using the SLAM technique. The experimental results indicate that robot's maneuverability was stable, and its mapping and localization were also accurate in different drain types. Finally, for effective drain maintenance, the SLAM-based defect map was generated by fusing defect detection results in the lidar-SLAM map.


Asunto(s)
Rapaces , Robótica , Algoritmos , Animales , Humanos
4.
Sci Rep ; 11(1): 22378, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789747

RESUMEN

Drain blockage is a crucial problem in the urban environment. It heavily affects the ecosystem and human health. Hence, routine drain inspection is essential for urban environment. Manual drain inspection is a tedious task and prone to accidents and water-borne diseases. This work presents a drain inspection framework using convolutional neural network (CNN) based object detection algorithm and in house developed reconfigurable teleoperated robot called 'Raptor'. The CNN based object detection model was trained using a transfer learning scheme with our custom drain-blocking objects data-set. The efficiency of the trained CNN algorithm and drain inspection robot Raptor was evaluated through various real-time drain inspection field trial. The experimental results indicate that our trained object detection algorithm has detect and classified the drain blocking objects with 91.42% accuracy for both offline and online test images and is able to process 18 frames per second (FPS). Further, the maneuverability of the robot was evaluated from various open and closed drain environment. The field trial results ensure that the robot maneuverability was stable, and its mapping and localization is also accurate in a complex drain environment.

5.
Sensors (Basel) ; 22(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009802

RESUMEN

Periodic inspection of false ceilings is mandatory to ensure building and human safety. Generally, false ceiling inspection includes identifying structural defects, degradation in Heating, Ventilation, and Air Conditioning (HVAC) systems, electrical wire damage, and pest infestation. Human-assisted false ceiling inspection is a laborious and risky task. This work presents a false ceiling deterioration detection and mapping framework using a deep-neural-network-based object detection algorithm and the teleoperated 'Falcon' robot. The object detection algorithm was trained with our custom false ceiling deterioration image dataset composed of four classes: structural defects (spalling, cracks, pitted surfaces, and water damage), degradation in HVAC systems (corrosion, molding, and pipe damage), electrical damage (frayed wires), and infestation (termites and rodents). The efficiency of the trained CNN algorithm and deterioration mapping was evaluated through various experiments and real-time field trials. The experimental results indicate that the deterioration detection and mapping results were accurate in a real false-ceiling environment and achieved an 89.53% detection accuracy.


Asunto(s)
Aprendizaje Profundo , Robótica , Algoritmos , Animales , Redes Neurales de la Computación , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...