Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Air Soil Pollut ; 234(3): 202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938148

RESUMEN

The release of tetracycline hydrochloride (TCH) and methylene blue (MB) dye into the aquatic system uncontrollably caused major environmental and health problems; hence, their prevention required serious attention. Adsorption process is now being researched in order to increase adsorption efficiency and reprocess to alleviate environmental issues. The use of magnetic nanoparticle as an adsorbent for wastewater treatment has a lot of prospective. A magnetic iron oxide nanoparticle surface modified by Vasaka (Justicia adhatoda) leaf extract (JA-MIONs) is used to give a fast removal approach for MB dye and TCH antibiotics. Dynamic light scattering, UV-Vis and band gap measurement, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy were operated to analyse the formation and size of these magnetic nanoparticles. The impacts of different factors such as contact time (30-150 min), adsorbate concentration (10-50 mg/L), pH (4-10), and adsorbent dose (2-10 mg) were explored. Adsorption kinetics and isotherms show that it follows the pseudo-first-order kinetic and the Freundlich isotherm, with maximum adsorption capacities of 76.92 mg/g for MB and 200 mg/g for TCH at 298 K. The reusability of the JA-MIONs eventually exhibited a decline in the adsorption percentage of MB and TCH after five and four times respectively. After the desorption-adsorption cycles, this adsorbent continued to exhibit significant adsorption capacity. This investigation furnished the significant reference data for the synthesis of JA-MIONs as a novel and auspicious adsorbent for the industrial clean-up of toxic dyes and heavily used antibiotics from water.

2.
RSC Adv ; 12(53): 34335-34345, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36545591

RESUMEN

Herein, catalyst-free, eco-friendly, photo-triggered, self-degradation of malachite green (MG) and crystal violet (CV) dyes in comparison to photocatalytic degradation were investigated. To the best of our knowledge, this is the first systematic study to demonstrate the reactive oxygen species (ROS), electron (e-) and hole (h+) generation ability of dyes to initiate self-degradation in the presence of direct solar energy (a free source of UV radiation) and UV light (254 and 365 nm). Various experimental conditions, e.g., different dye concentrations, pH, vessel-materials (borosilicate glass and quartz) were optimized to achieve the optimum degradation outcomes. The degradation kinetics of dyes suggested the applicability of second-order-kinetics to all kinds of applied light sources. Investigation of the thermodynamic approach reveals that the self-degradation procedure was endothermic, with activation energies of 46.89 and 52.96 kJ mol-1, respectively, for MG and CV. The self-degradation mechanism was further corroborated by the quantum calculations, while the formation of final degraded products for dye-degradations was established on the basis of mass spectroscopy and total organic carbon (TOC) analysis. The computed emission energies for MG and CV advocate that the excitation energy occurs due to the sole-attribution electron excitation from the Highest Occupied Molecular Orbital (HOMO) to the Lowest Unoccupied Molecular Orbital (LUMO). The close energy difference between the hydroxyl anions and the dyes also facilitates the creation of the hydroxyl radical. In a similar manner, the excited electrons from the aforementioned dyes may readily be transferred to triplet molecular oxygen, which makes it possible to generate super oxide. The radical generated in the process facilitates the self-degradation of the dyes.

3.
Steroids ; 188: 109102, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36029810

RESUMEN

Several drugs and antibodies have been repurposed to treat COVID-19. Since the outcome of the drugs and antibodies clinical studies have been mostly inconclusive or with lesser effects, therefore the need for alternative treatments has become unavoidable. However, corticosteroids, which have a history of therapeutic efficacy against coronaviruses (SARS and MERS), might emerge into one of the pandemic's heroic characters. Corticosteroids serve an immunomodulatory function in the post-viral hyper-inflammatory condition (the cytokine storm, or release syndrome), suppressing the excessive immunological response and preventing multi-organ failure and death. Therefore, corticosteroids have been used to treat COVID-19 patients for more than last two years. According to recent clinical trials and the results of observational studies, corticosteroids can be administered to patients with severe and critical COVID-19 symptoms with a favorable risk-benefit ratio. Corticosteroids like Hydrocortisone, dexamethasone, Prednisolone and Methylprednisolone has been reported to be effective against SARS-CoV-2 virus in comparison to that of non-steroid drugs, by using non-genomic and genomic effects to prevent and reduce inflammation in tissues and the circulation. Clinical trials also show that inhaled budesonide (a synthetic corticosteroid) increases time to recovery and has the potential to reduce hospitalizations or fatalities in persons with COVID-19. There is also a brief overview of the industrial preparation of common glucocorticoids.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glucocorticoides , Humanos , Corticoesteroides/uso terapéutico , Glucocorticoides/uso terapéutico , Metilprednisolona , SARS-CoV-2
4.
Bioinorg Chem Appl ; 2022: 8453159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464734

RESUMEN

Phenalenyl (PLY)-based metal complexes are a new addition to the metal complex family. Various applications of metal-based phenalenyl complexes (metal-PLY) have been reported, such as catalyst, quantum spin simulators, spin electronic devices, and molecular conductors, but the biological significance of metal-PLY (metal = Co(II), Mn(III), Ni(II), Fe(III), and Al(III)) systems has yet to be explored. In this study, the anticancer properties of such complexes were investigated in ovarian cancer cells (SKOV3 and HEY A8), and the cytotoxicity was comparable to that of other platinum-based drugs. Antibacterial activity of the metal-PLY complexes against both gram-negative (E. coli) and gram-positive (S. aureus) bacteria was studied using a disk diffusion test and minimum inhibitory concentration (MIC) methods. All five metal-PLY complexes showed significant antibacterial activity against both bacterial strains. The antioxidant properties of metal-PLY complexes were evaluated following the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method and were acceptable. The DNA-binding properties of these metal-PLY complexes were investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements, and thermal denaturation methods. Experimental evidence revealed that the complexes bind to DNA through intercalation, and the molecular docking study supported this conclusion.

5.
Nanomaterials (Basel) ; 10(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824673

RESUMEN

Adsorption of organic pollutants, toxic metal ions, and removal of harmful bacteria can give us clean and pure drinkable water from wastewater resources. Respective magnetite nanoparticles (MNPs) were synthesized using a cheaper and greener way in an open-air environment with the use of crude latex of Jatropha curcas (JC) and leaf extract of Cinnamomum tamala (CT). Characterization of MNPs had been performed by dynamic light scattering (DLS), Ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, powdered X-ray diffraction (XRD), and field emission scanning electron microscope (FE-SEM). The size ranges of the synthesized MNPs were observed in between 20-42 nm for JC-Fe3O4 and within 26-35 nm for CT-Fe3O4 by FE-SEM images. The effect of synthesized magnetic nanoparticles in wastewater treatment (bacterial portion), dye adsorption, toxic metal removal as well as antibacterial, antioxidant, and cytotoxic activities were studied. This purification will lead to an increase in the resources of pure drinking water in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...