Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Perinatol ; 41(4): 383-394, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154468

RESUMEN

OBJECTIVE: Congenital birth defects affect 3 to 5% of pregnancies. Genetic counseling can help patients navigate the testing process and understand results. The study objective was to identify predictors and utility of genetic counseling at the time of pregnancy termination. Additionally, we aimed to see what proportion of patients would benefit from additional testing based on the results of the genetic testing. STUDY DESIGN: This was a retrospective cohort review of all terminations performed for fetal anomalies by an academic center from July 2016 to May 2020. Indications were stratified by abnormal serum screening or types of abnormal ultrasound findings. Data were abstracted regarding uptake of genetic counseling and testing results. Abnormal results that warranted additional testing regarding recurrence risks were noted. Multivariable logistic regression was performed to identify predictors of receipt of genetic counseling and testing. RESULTS: Of 387 patients, 57% (n = 220) received preprocedure genetic counseling and 43% (n = 167) did not. Among patients who received diagnostic testing, 62% (n = 194) had genetic counseling compared with 38% (n = 121) without counseling (adjusted odds ratio 2.46, 95% confidence interval [1.41-4.29], p < 0.001). Among the entire cohort, 38% (n = 148) had suspected aneuploidy based on serum screening. Of these, 89% (n = 132/148) had definitive testing, 92% (n = 122/132) confirming the aneuploidy. Among the other 68% (n = 239) with structural anomalies, 76% (n = 183) had diagnostic testing with 29% (n = 53) yielding an abnormal result. Among those fetuses with structural anomalies, 36% (n = 19/53) of genetic diagnoses warranted additional parental testing because of risk of recurrence compared with only 2% (n = 2/122) of patients with abnormal serum screening results alone. CONCLUSION: Genetic counseling was associated with increased uptake of diagnostic testing, which yielded useful information and prompted additional testing. This is important for determining etiology and recurrence risk and should be offered to patients presenting for termination for fetal indications, as well as providing diagnostic closure for patients. KEY POINTS: · Genetic counseling increases the uptake of diagnostic testing in patients with fetal anomalies.. · Patients with ultrasound anomalies received less diagnostic testing despite actionable results 36% of the time.. · Genetic testing is invaluable for recurrence risk counseling even if patients chose to terminate..


Asunto(s)
Asesoramiento Genético , Pruebas Genéticas , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Aneuploidia , Feto/anomalías , Ultrasonografía Prenatal , Diagnóstico Prenatal/métodos
2.
Neoreviews ; 23(12): e829-e840, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450644

RESUMEN

With recent advances in the technologies used for genetic diagnosis as well as our understanding of the genetic basis of disease, a growing list of options is available for providers when caring for a newborn with features suggesting an underlying genetic etiology. The choice of the most appropriate genetic test for a specific situation includes clinical considerations such as the phenotypic features and type of genetic abnormality suspected, as well as practical considerations such as cost and turnaround time. In this review, we discuss clinical exome sequencing in the context of genetic evaluation of newborns, including technical considerations, variant interpretation, and incidental/secondary findings. Strengths and limitations of exome sequencing are discussed and compared with those of other commonly known tests such as karyotype analysis, fluorescence in situ hybridization, chromosomal microarray, and sequencing panels, along with integration of results from prenatal testing if available. We also review future directions including genome sequencing and other emerging technologies that are starting to be used in clinical settings.


Asunto(s)
Exoma , Unidades de Cuidado Intensivo Neonatal , Recién Nacido , Humanos , Femenino , Embarazo , Exoma/genética , Hibridación Fluorescente in Situ , Secuenciación del Exoma , Pruebas Genéticas
3.
Cancer Genet ; 268-269: 1-21, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35970109

RESUMEN

Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Pronóstico , Inmunofenotipificación , Medicina de Precisión , Genómica
4.
Adv Hematol ; 2022: 8091746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35378848

RESUMEN

Objective: Mutational analysis by next-generation sequencing (NGS) obtained by peripheral blood NGS has been of clinical interest to use as a minimally invasive screening tool. Our study evaluates the correlation between NGS results on peripheral blood and bone marrow in hematolymphoid disease. Method: We evaluated patients who had NGS for presumed hematologic malignancy performed on peripheral blood and bone marrow within a 1-year interval of each other. We excluded cases in which chemotherapy or bone marrow transplant occurred in the interval between the two tests. The concordance across peripheral blood and bone marrow NGS results was assessed by kappa coefficient analysis. Results: A total of 163 patients were studied. Concordance of peripheral blood and bone marrow NGS found in 150 patients (92.0%) with a kappa coefficient of 0.794 (kappa standard error 0.054) and P value for testing kappa <0.0001. Myeloid neoplasms showed concordant results in 77/78 cases (98.7%) with a kappa coefficient of 0.916. Lymphoid neoplasms showed concordant results in 26/31 cases (83.9%) with a kappa coefficient of 0.599. Nonneoplastic cases showed concordant results in 47/54 cases (87.0%) with a kappa coefficient of 0.743. Conclusion: Peripheral blood NGS is a reliable tool for mutational analysis and provides a less invasive method for screening and monitoring of the molecular profile.

5.
Cancer Discov ; 12(4): 1046-1069, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34930786

RESUMEN

Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR). Cells harboring BRAFV600E FAs displayed mode switching between DMs and HSRs, from both de novo genetic changes and selection of preexisting subpopulations. Plasticity is not exclusive to ecDNAs, as cells harboring HSRs exhibit drug addiction-driven structural loss of BRAF amplicons upon dose reduction. FA mechanisms can couple with kinase domain duplications and alternative splicing to enhance resistance. Drug-responsive amplicon plasticity is observed in the clinic and can involve other MAPK pathway genes, such as RAF1 and NRAS. BRAF FA-mediated dual MAPKi-resistant cells are more sensitive to proferroptotic drugs, extending the spectrum of ferroptosis sensitivity in MAPKi resistance beyond cases of dedifferentiation. SIGNIFICANCE: Understanding the structure and dynamics of oncogene amplifications is critical for overcoming tumor relapse. BRAF amplifications are highly plastic under MAPKi dosage challenges in melanoma, through involvement of de novo genomic alterations, even in the HSR mode. Moreover, BRAF FA-driven, dual MAPKi-resistant cells extend the spectrum of resistance-linked ferroptosis sensitivity. This article is highlighted in the In This Issue feature, p. 873.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Oncogenes , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
6.
Am J Med Genet A ; 176(12): 2829-2834, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30244526

RESUMEN

Nonimmune hydrops fetalis (NIHF) is a rare disorder with a high perinatal mortality of at least 50%. One cause of NIHF is generalized lymphatic dysplasia (GLD), a rare form of primary lymphedema of the extremities and systemic involvement including chylothoraces and pericardial effusions. An autosomal recessive form of GLD has been described, caused by variants in the PIEZO1 gene. It has been reported clinically to cause NIHF and childhood onset of facial and limb lymphedema, most of which were diagnosed postnatally. We present a case of a woman with recurrent pregnancies affected by NIHF because of novel compound heterozygous variants in the PIEZO1 gene diagnosed prenatally using exome sequencing (ES). Two variants in PIEZO1 (c.3206G>A and c.6208A>C) were identified that were inherited from the father and mother, and are predicted to cause a nonsense and missense change, respectively, in the PIEZO1 subunits. Ultrasound demonstrated severe bilateral pleural effusions, whole body edema and polyhydramnios. Histopathology revealed an increased number of lymphatic channels, many of which showed failure of luminal canalization. Sanger sequencing confirmed the same variants in a prior fetal demise. We provide phenotypic correlation with ultrasound and autopsy finding, review PIEZO1 variants as a cause of GLD and discuss the uses of prenatal ES to date.


Asunto(s)
Exoma , Variación Genética , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Canales Iónicos/genética , Adulto , Autopsia , Biopsia , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Recién Nacido , Embarazo , Ultrasonografía Prenatal , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...