Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18875, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914708

RESUMEN

Average beat interval (BI) and beat interval variability (BIV) are primarily determined by mutual entrainment between the autonomic-nervous system (ANS) and intrinsic mechanisms that govern sinoatrial node (SAN) cell function. While basal heart rate is not affected by age in humans, age-dependent reductions in intrinsic heart rate have been documented even in so-called healthy individuals. The relative contributions of the ANS and intrinsic mechanisms to age-dependent deterioration of SAN function in humans are not clear. We recorded ECG on patients (n = 16 < 21 years and n = 23 41-78 years) in the basal state and after ANS blockade (propranolol and atropine) in the presence of propofol and dexmedetomidine anesthesia. Average BI and BIV were analyzed. A set of BIV features were tested to designated the "signatures" of the ANS and intrinsic mechanisms and also the anesthesia "signature". In young patients, the intrinsic mechanisms and ANS mainly contributed to long- and short-term BIV, respectively. In adults, both ANS and intrinsic mechanisms contributed to short-term BIV, while the latter also contributed to long-term BIV. Furthermore, anesthesia affected ANS function in young patients and both mechanisms in adult. The work also showed that intrinsic mechanism features can be calculated from BIs, without intervention.


Asunto(s)
Atropina , Nodo Sinoatrial , Adulto , Humanos , Propranolol , Frecuencia Cardíaca/fisiología , Sistema Nervioso Autónomo/fisiología , Electrocardiografía
2.
Front Biosci ; 10: 608-19, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15569603

RESUMEN

Stress pretreatments protect myocardium from ischemic injury. We hypothesized that tetracycline, an antibiotic, may induce a stress response via the inhibition of mitochondrial translation as it induces the cold stress response by translational inhibition in E. coli. If so, tetracycline may protect myocardium from ischemic injury as stress pretreatments do. Thus, we investigated the effects of tetracycline on myocardial ischemia and its association with stress response. In a dog model of acute ischemia, 4mg/kg tetracycline injected 30 min prior to the occlusion improved the functional recovery from stunning of myocardium caused by ischemia. The same dosage of tetracycline dramatically reduced the size of infarct area in murine hearts analyzed by tetrazolium staining. In HeLa cells, tetracycline induced molecules that were increased by cold stress, which suggests that tetracycline may induce a cold stress-like response in mammalian cells. These molecules were also induced by ischemic stress in murine hearts, suggesting that the stress response caused by translational inhibition in mitochondria may be associated with the cardioprotection by tetracycline. Our results suggest that a subclinical dosage of tetracycline may protect heart from ischemic injury. Therefore, tetracycline may be of great use in suppressing the development of infarction caused by myocardial ischemia. This study is also important for providing new insights into the non-antimicrobial effects of tetracycline and its derivatives.


Asunto(s)
Corazón/efectos de los fármacos , Isquemia Miocárdica/prevención & control , Miocardio/patología , Tetraciclina/farmacología , Animales , Perros , Células HeLa , Hemodinámica , Humanos , Isquemia/patología , Ratones , Miocardio/metabolismo , Reperfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...