Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 691: 149258, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38029541

RESUMEN

Mast cells (MCs) possess numerous potent inflammatory mediators and undergo differential regulation in response to antigen (Ag) stimulation. Among the regulatory systems governing secretory responses, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a pivotal role in facilitating granule-plasma membrane fusion and subsequent secretion. Our previous investigation documented the involvement of vesicle-associated membrane protein 3 (VAMP3) in regulating cytokine secretions in RBL-2H3 cells, a model for MC IgE-mediated responses. In addition to VAMP3, VAMP7 is expressed in MCs, but its functional role remains elusive. The present study seeks to explore VAMP7-specific regulatory mechanisms in MCs, shedding light on one of the mechanisms governing heterogeneous secretory responses in these cells. Murine bone marrow-derived mast cells (BMMCs) were examined to analyze the subcellular distribution of inflammatory mediators, specifically TNFα, CCL2, and histamine, and VAMPs (i.e., VAMP3, VAMP7, and VAMP8). Immunocytochemistry and the transient expression of fluorescent protein-conjugated target proteins were used to discern the distribution of various inflammatory mediators and VAMP7 through confocal laser scanning microscopy. Each inflammatory mediator (TNFα, CCL2, and histamine) was found in secretory granules of different sizes within BMMCs. VAMP7 exhibited a distinct distribution compared to VAMP3 in these granules. Notably, an overlapping distribution was observed between VAMP7 and CCL2, but not between VAMP7 and TNFα or VAMP7 and histamine. This suggests that CCL2 resides within VAMP7-expressing granules and is subject to VAMP7-dependent secretory regulation. Consistently, BMMCs with VAMP7 knockdown showed markedly reduced CCL2 secretion after Ag stimulation. These observations underscore the heterogeneity of MC secretory responses and unveil a novel VAMP7-dependent CCL2 secretion mechanism within MCs. This discovery might pave the way for the development of more precise therapeutic strategies to modulate MC secretion in allergic conditions.


Asunto(s)
Histamina , Mastocitos , Ratones , Animales , Proteína 3 de Membrana Asociada a Vesículas/genética , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Histamina/metabolismo , Mastocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vesículas Secretoras/metabolismo , Proteínas SNARE/metabolismo
2.
Neurosci Lett ; 657: 22-26, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28774570

RESUMEN

Cerebellar Purkinje cells differentiate the most elaborate dendritic trees among neurons in the brain and constitute the principal part of cerebellar neuronal circuitry. In the present study, we examined the role of the GluA2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors in the dendritic differentiation of Purkinje cells. Since mature Purkinje cells express the GluA2 subunit, AMPA receptors on them exhibit a low Ca2+ permeability. Does this expression of GluA2, leading to the loss of Ca2+ permeability of AMPA receptors, have a positive significance in the dendritic differentiation of Purkinje cells? To answer this question, we introduced GluA2 siRNA into immature Purkinje cells in cerebellar cell cultures using a single-cell electroporation technique. The dendritic elongation and branching, as well as spine formation, were inhibited by GluA2 knockdown in Purkinje cells. GluA2 knockdown augmented the elevation of intracellular Ca2+ concentrations and a higher incidence of oscillation of intracellular Ca2+ concentrations in response to glutamate. These findings suggest that excessive elevation of intracellular Ca2+ concentrations has a negative effect on the dendritic differentiation of Purkinje cells and that the expression of GluA2 inhibits this negative effect in the development of Purkinje cells.


Asunto(s)
Calcio/metabolismo , Diferenciación Celular/fisiología , Dendritas/metabolismo , Células de Purkinje/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores AMPA/metabolismo , Animales , Células Cultivadas , Electroporación , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA