RESUMEN
BACKGROUND AND OBJECTIVES: Epidural catheter bacteria filters are barriers in the patient-controlled analgesia/anaesthesia for preventing contamination at the epidural insertion site. The efficiency of these filters varies according to pore sizes and materials. METHOD: The bacterial adhesion capability of the two filters was measured in vitro experiment. Adhesion capacities for standard Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) strains of the two different filters (Portex and Rusch) which have the same pore size were examined. Bacterial suspension of 0.5 Mc Farland was placed in the patient-controlled analgesia pump, was filtered at a speed of 5 mL/h. in continuous infusion for 48 h and accumulated in bottle. The two filters were compared with colony counts of bacteria in the filters and bottles. At the same time, the filters and adhered bacteria were monitored by scanning electron microscope. RESULTS: Electron microscopic examination of filters showed that the Portex filter had a granular and the Rusch filter fibrillary structure. Colony counting from the catheter and bottle showed that both of the filters have significant bacterial adhesion capability (p < 0.001). After the bacteria suspension infusion, colony countings showed that the Portex filter was more efficient (p < 0.001). There was not any difference between S. aureus and P. aeruginosa bacteria adhesion. In the SEM monitoring after the infusion, it was physically shown that the bacteria were adhered efficiently by both of the filters. CONCLUSION: The granular structured filter was found statistically and significantly more successful than the fibrial. Although the pore sizes of the filters were same - of which structural differences shown by SEM were the same - it would not be right to attribute the changes in the efficiencies to only structural differences. Using microbiological and physical proofs with regard to efficiency at the same time has been another important aspect of this experiment.
JUSTIFICATIVA E OBJETIVOS: Os filtros antibacterianos para cateter epidural são barreiras da analgesia/anestesia controlada pelo paciente para evitar a contaminação do local de inserção epidural. A eficácia desses filtros varia de acordo com o material e o tamanho dos poros. MÉTODO: A capacidade de aderência bacteriana dos dois filtros foi medida em experimento in vitro. Avaliamos a capacidade de aderência das cepas padrão de Staphylococcus aureus (ATCC 25923) e Pseudomonas aeruginosa (ATCC 27853) de dois filtros diferentes (Portex e Rusch), mas com poros do mesmo tamanho. Uma suspensão bacteriana grau 0,5 de McFarland foi colocada na bomba de analgesia controlada pelo paciente e filtrada a uma velocidade de 5 mL/h em infusão contínua por 48 horas e acumulada em frasco. Os dois filtros foram comparados com contagens de colônias de bactérias nos filtros e frascos. Ao mesmo tempo, os filtros e as bactérias aderidas foram monitorados com microscópio eletrônico de varredura. RESULTADOS: O exame dos filtros por microscópico eletrônico mostrou que a estrutura do filtro Portex era granulada e a do filtro Rusch fibrilar. A contagem de colônias do cateter e do frasco mostrou que ambos os filtros tinham uma capacidade de adesão bacteriana significativa (p < 0,001). Após a infusão da suspensão bacteriana, as contagens de colônias mostraram que o filtro Portex foi mais eficiente (p < 0,001). Não houve qualquer diferença entre as adesões de bactérias S. aureus e P. aeruginosa. Na monitoração por MEV após a infusão, ficou fisicamente evidente que as bactérias foram aderidas de modo eficaz por ambos os filtros. CONCLUSÃO: O filtro com estrutura granular foi estatística e significativamente mais bem- sucedido do que o filtro com estrutura fibrilar. Embora o tamanho dos poros dos filtros fosse igual - as diferenças estruturais mostradas pelo MEV eram semelhantes -, não seria justo atribuir as alterações de eficiência apenas às diferenças estruturais. O uso ao mesmo tempo de provas microbiológicas e físicas para avaliar a eficácia foi outro aspecto importante deste experimento.
Asunto(s)
Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Conocimiento/terapia , Trastorno Depresivo Mayor/terapia , Función Ejecutiva/fisiología , Psicoterapia/métodos , Comorbilidad , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/epidemiología , Trastorno Depresivo Mayor/epidemiología , Índice de Severidad de la Enfermedad , Resultado del TratamientoRESUMEN
BACKGROUND AND OBJECTIVES: Epidural catheter bacteria filters are barriers in the patient-controlled analgesia/anaesthesia for preventing contamination at the epidural insertion site. The efficiency of these filters varies according to pore sizes and materials. METHOD: The bacterial adhesion capability of the two filters was measured in vitro experiment. Adhesion capacities for standard Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) strains of the two different filters (Portex and Rusch) which have the same pore size were examined. Bacterial suspension of 0.5 Mc Farland was placed in the patient-controlled analgesia pump, was filtered at a speed of 5 mL/h. in continuous infusion for 48 h and accumulated in bottle. The two filters were compared with colony counts of bacteria in the filters and bottles. At the same time, the filters and adhered bacteria were monitored by scanning electron microscope. RESULTS: Electron microscopic examination of filters showed that the Portex filter had a granular and the Rusch filter fibrillary structure. Colony counting from the catheter and bottle showed that both of the filters have significant bacterial adhesion capability (p<0.001). After the bacteria suspension infusion, colony countings showed that the Portex filter was more efficient (p<0.001). There was not any difference between S. aureus and P. aeruginosa bacteria adhesion. In the SEM monitoring after the infusion, it was physically shown that the bacteria were adhered efficiently by both of the filters. CONCLUSION: The granular structured filter was found statistically and significantly more successful than the fibrial. Although the pore sizes of the filters were same - of which structural differences shown by SEM were the same - it would not be right to attribute the changes in the efficiencies to only structural differences. Using microbiological and physical proofs with regard to efficiency at the same time has been another important aspect of this experiment.
Asunto(s)
Analgesia Epidural/instrumentación , Bacterias/aislamiento & purificación , Filtración/instrumentación , Adhesión Bacteriana , Microscopía Electrónica de Rastreo , Permeabilidad , EsterilizaciónRESUMEN
BACKGROUND AND OBJECTIVES: Epidural catheter bacteria filters are barriers in the patient-controlled analgesia/anaesthesia for preventing contamination at the epidural insertion site. The efficiency of these filters varies according to pore sizes and materials. METHOD: The bacterial adhesion capability of the two filters was measured in vitro experiment. Adhesion capacities for standard Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) strains of the two different filters (Portex and Rusch) which have the same pore size were examined. Bacterial suspension of 0.5 Mc Farland was placed in the patient-controlled analgesia pump, was filtered at a speed of 5mL/h. in continuous infusion for 48h and accumulated in bottle. The two filters were compared with colony counts of bacteria in the filters and bottles. At the same time, the filters and adhered bacteria were monitored by scanning electron microscope. RESULTS: Electron microscopic examination of filters showed that the Portex filter had a granular and the Rusch filter fibrillary structure. Colony counting from the catheter and bottle showed that both of the filters have significant bacterial adhesion capability (p<0.001). After the bacteria suspension infusion, colony countings showed that the Portex filter was more efficient (p<0.001). There was not any difference between S. aureus and P. aeruginosa bacteria adhesion. In the SEM monitoring after the infusion, it was physically shown that the bacteria were adhered efficiently by both of the filters. CONCLUSION: The granular structured filter was found statistically and significantly more successful than the fibrial. Although the pore sizes of the filters were same - of which structural differences shown by SEM were the same - it would not be right to attribute the changes in the efficiencies to only structural differences. Using microbiological and physical proofs with regard to efficiency at the same time has been another important aspect of this experiment.