Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 68(7): 730-739, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36964088

RESUMEN

With the rapid development of human lunar exploration projects, the lunar base establishment and resource utilization are on the way, and hence it is urgent and significant to reasonably predict engineering properties of the lunar regolith, which remains to be unclear due to limited lunar samples currently accessible for geotechnical tests. In this contribution, we aim to address this outstanding challenge from the perspective of granular material mechanics. To this end, the 3D multi-aspect geometrical characteristics and mechanical properties of Chang'e-5 lunar samples are for the first time evaluated with a series of non-destructive microscopic tests. Based on the measured particle surface roughness and Young's modulus, the interparticle friction coefficients of lunar regolith particles are well predicted through an experimental fitting approach using previously published data on terrestrial geomaterials or engineering materials. Then the residual friction angle of the lunar regolith under low confining pressure is predicted as 53° to 56° according to the particle overall regularity and interparticle friction coefficients of Chang'e-5 lunar samples. The presented results provide a novel cross-scale method to predict engineering properties of the lunar regolith from particle scale information to serve for the future lunar surface engineering construction.

2.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34372079

RESUMEN

The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.

3.
Materials (Basel) ; 14(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34443102

RESUMEN

In materials science and engineering, a significant amount of research has been carried out using indentation techniques in order to characterize the mechanical properties and microstructure of a broad range of natural and engineered materials. However, there are many unresearched or partly researched areas, such as, for example, the investigation of the shape of the indentation load-displacement curve, the associated mechanism in porous materials with clastic texture, and the influence of the texture on the constitutive behavior of the materials. In the present study, nanoindentation is employed in the analysis of the mechanical behavior of a benchmark material composed of plaster of Paris, which represents a brand of highly porous-clastic materials with a complex structure; such materials may find many applications in medicine, production industry, and energy sectors. The focus of the study is directed at the examination of the influence of the porous structure on the load-displacement response in loading and unloading phases based on nanoindentation experiments, as well as the variation with repeating the indentation in already indented locations. Events such as pop-in in the loading phase and bowing out and elbowing in the unloading phase of a given nanoindentation test are studied. Modulus, hardness, and the elastic stiffness values were additionally examined. The repeated indentation tests provided validations of various mechanisms in the loading and unloading phases of the indentation tests. The results from this study provide some fundamental insights into the interpretation of the nanoindentation behavior and the viscoelastic nature of porous-clastic materials. Some insights on the influence of indentation spacing to depth ratio were also obtained, providing scope for further studies.

4.
Sensors (Basel) ; 21(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34283164

RESUMEN

The crushing behavior of particles is encountered in a large number of natural and engineering systems, and it is important for it to be examined in problems related to hydraulic fracturing, where proppant-proppant and proppant-rock interactions are essential to be modeled as well as geotechnical engineering problems, where grains may crush because the transmitted stresses at their contacts exceed their tensile strength. Despite the interest in the study of the crushing behavior of natural particles, most previous experimental works have examined the single-grain or multiple-grain crushing configurations, and less attention has been given in the laboratory investigation of the interactions of two grains in contact up to their failure as well as on the assessment of the methodology adopted to analyze the data. In the present study, a quartz sand of 1.18-2.36 mm in size was examined, performing a total of 244 grain-to-grain crushing tests at two different speeds, 0.01 and 1 mm/min. In order to calculate stresses from the measured forces, Hertz modeling was implemented to calculate an approximate contact area between the particles based on their local radii (i.e., the radius of the grains in the vicinity of their contact). Based on the results, three different modes of failure were distinguished as conservative, fragmentary, and destructive, corresponding to micro-scale, meso-scale, and macro-scale breakage, respectively. From the data, four different classes of curves could be identified. Class-A and class-B corresponded to an initially Hertzian behavior followed by a brittle failure with a distinctive (single) peak point. The occurrence of hardening prior to the failure point distinguished class-B from class-A. Two additional classes (termed as class-C and class-D) were observed having two or multiple peaks, and much larger displacements were necessary to mobilize the failure point. Hertz fitting, Weibull statistics, and clustering were further implemented to estimate the influence of local radius and elastic modulus values. One of the important observations was that the method of analysis adopted to estimate the local radius of the grains, based on manual assessment (i.e., eyeball fitting) or robust Matlab-based image processing, was a key factor influencing the resultant strength distribution and m-modulus, which are grain crushing strength characteristics. The results from the study were further compared with previously reported data on single- and multiple-grain crushing tests.

5.
Sensors (Basel) ; 21(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34300469

RESUMEN

Space exploration has attracted significant interest by government agencies and the scientific community in recent years in an attempt to explore possible scenarios of settling of facilities on the Moon and Mars surface. One of the important components in space exploration is related with the understanding of the geophysical and geotechnical characteristics of the surfaces of planets and their natural satellites and because of the limitation of available extra-terrestrial samples, many times researchers develop simulants, which mimic the properties and characteristics of the original materials. In the present study, characterization at the grain-scale was performed on the Mojave Mars Simulant (MMS-1) with emphasis on the frictional behavior of small size samples which follow the particle-to-particle configuration. Additional characterization was performed by means of surface composition and morphology analysis and the crushing behavior of individual grains. The results from the study present for the first time the micromechanical tribological response of Mars simulant, and attempts were also made to compare the behavior of this simulant with previously published results on other types of Earth and extra-terrestrial materials. Despite some similarities between Mars and Moon simulants, the unique characteristics of the MMS-1 samples resulted in significant differences and particularly in severe damage of the grain surfaces, which was also linked to the dilation behavior at the grain-scale.


Asunto(s)
Luna , Vuelo Espacial , Planeta Tierra , Grano Comestible , Medio Ambiente Extraterrestre
6.
Polymers (Basel) ; 13(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205909

RESUMEN

Recycled rubber in granulated form is a promising geosynthetic material to be used in geotechnical/geo-environmental engineering and infrastructure projects, and it is typically mixed with natural soils/aggregates. However, the complex interactions of grains between geological materials (considered as rigid bodies) and granulated rubber (considered as soft bodies) have not been investigated systematically. These interactions are expected to have a significant influence on the bulk strength, deformation characteristics, and stiffness of binary materials. In the present study, micromechanical-based experiments are performed applying cyclic loading tests investigating the normal contact behavior of rigid-soft interfaces. Three different geological materials were used as "rigid" grains, which have different origins and surface textures. Granulated rubber was used as a "soft" grain simulant; this material has viscoelastic behavior and consists of waste automobile tires. Ten cycles of loading-unloading were applied without and with preloading (i.e., applying a greater normal load in the first cycle compared with the consecutive cycles). The data analysis showed that the composite sand-rubber interfaces had significantly reduced plastic displacements, and their behavior was more homogenized compared with that of the pure sand grain contacts. For pure sand grain contacts, their behavior was heavily dependent on the surface roughness and the presence of natural coating, leading, especially for weathered grains, to very high plastic energy fractions and significant plastic displacements. The behavior of the rigid-soft interfaces was dominated by the rubber grain, and the results showed significant differences in terms of elastic and plastic fractions of displacement and dissipated energy compared with those of rigid interfaces. Additional analysis was performed quantifying the normal contact stiffness, and the Hertz model was implemented in some of the rigid and rigid-soft interfaces.

7.
Materials (Basel) ; 13(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053998

RESUMEN

The coefficient of restitution (COR) represents the fraction of pre-collision kinetic energy remained after the collision between two bodies. The COR parameter plays an important role in the discrete numerical analysis of granular flows or the design of protective barriers to reduce flow energy. This work investigated the COR for grain-block type impacts through comprehensive experiments using a custom-built impact loading apparatus. Glass balls of three different sizes were used as grains. The impact experiments were performed on three different types of materials as base blocks, namely brass, granite and rubber. Experiments on the brass block showed a decrease in COR values with increasing grain size. On the contrary, impacts on granite and rubber blocks showed an increase in COR values with increasing grain size. Additionally, the effect of surface roughness on the COR was investigated. It was revealed that the increase in surface roughness of either the grain or the block reduced the COR values due to the increased plastic deformations of surface asperities.

8.
Materials (Basel) ; 11(2)2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385026

RESUMEN

In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics. Comparing to engineered materials, geological materials are found to display more pronounced initial plastic behavior during compression. Under the low normal load range applied in the study, between 1 and 5 N, we found that the frictional force is linearly correlated with the applied normal load, but we acknowledge that the data are found more scattered for natural soil grains, especially for rough and weathered materials which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely correlated with the Young's modulus and the surface roughness. These findings are important in geophysical and petroleum engineering contents, since a number of applications, such as landslides and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among others, can be simulated using discrete numerical methods. These methods employ contact mechanics properties at the grain scale and the inter-particle friction is one of these critical components. It is stressed in our study that friction is well correlated with the elastic and morphological characteristics of the grains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA