Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Device ; 2(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38617078

RESUMEN

Three-dimensional (3D) cancer cell culture models such as tumor spheroids better recapitulate in vivo tumors than conventional two-dimensional (2D) models. However, two major challenges limit the routine use of 3D tumor spheroids. Firstly, most existing methods of generating tumor spheroids are not high-throughput. Secondly, tumor spheroids generated using current methods are highly variable in dimension. Here, we describe a simple 'Do-It-Yourself (DIY)' device that can be assembled for less than $7 of parts and generate uniform tumor spheroids in a high-throughput manner. We used a simple phone coin vibrating motor to superimpose the vibration for breaking a laminar jet of cell-loaded alginate solution into equally sized spherical beads. We generated 3,970 tumor spheroids/min, which exhibited a hypoxic core recapitulating in vivo tumors and could be used to test the diffusion efficacy of anticancer drugs. Such low-cost, easy-to-fabricate, simple-to-operate systems with high-throughput outcomes are essential to democratize and standardize cancer research.

2.
Proc Natl Acad Sci U S A ; 121(5): e2316170121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252814

RESUMEN

Hemostatic devices are critical for managing emergent severe bleeding. With the increased use of anticoagulant therapy, there is a need for next-generation hemostats. We rationalized that a hemostat with an architecture designed to increase contact with blood, and engineered from a material that activates a distinct and undrugged coagulation pathway can address the emerging need. Inspired by lung alveolar architecture, here, we describe the engineering of a next-generation single-phase chitosan hemostat with a tortuous spherical microporous design that enables rapid blood absorption and concentrated platelets and fibrin microthrombi in localized regions, a phenomenon less observed with other classical hemostats without structural optimization. The interaction between blood components and the porous hemostat was further amplified based on the charged surface of chitosan. Contrary to the dogma that chitosan does not directly affect physiological clotting mechanism, the hemostat induced coagulation via a direct activation of platelet Toll-like receptor 2. Our engineered porous hemostat effectively stopped the bleeding from murine liver wounds, swine liver and carotid artery injuries, and the human radial artery puncture site within a few minutes with significantly reduced blood loss, even under the anticoagulant treatment. The integration of engineering design principles with an understanding of the molecular mechanisms can lead to hemostats with improved functions to address emerging medical needs.


Asunto(s)
Quitosano , Humanos , Animales , Ratones , Porcinos , Hemorragia/tratamiento farmacológico , Coagulación Sanguínea , Plaquetas , Anticoagulantes/farmacología
3.
Nat Biomed Eng ; 6(10): 1180-1195, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36229662

RESUMEN

New antibiotics should ideally exhibit activity against drug-resistant bacteria, delay the development of bacterial resistance to them and be suitable for local delivery at desired sites of infection. Here, we report the rational design, via molecular-docking simulations, of a library of 17 candidate antibiotics against bone infection by wild-type and mutated bacterial targets. We screened this library for activity against multidrug-resistant clinical isolates and identified an antibiotic that exhibits potent activity against resistant strains and the formation of biofilms, decreases the chances of bacterial resistance and is compatible with local delivery via a bone-cement matrix. The antibiotic-loaded bone cement exhibited greater efficacy than currently used antibiotic-loaded bone cements against staphylococcal bone infections in rats. Potent and locally delivered antibiotic-eluting polymers may help address antimicrobial resistance.


Asunto(s)
Antibacterianos , Cementos para Huesos , Ratas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Prótesis e Implantes
4.
J Chem Phys ; 156(1): 014503, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34998317

RESUMEN

A recent study introduced a novel mean-field model system where each particle over and above the interaction with its regular neighbors interacts with k extra pseudo-neighbors. Here, we present an extensive study of thermodynamics and its correlation with the dynamics of this system. We surprisingly find that the well-known thermodynamic integration (TI) method of calculating the entropy provides unphysical results. It predicts vanishing of the configurational entropy at temperatures close to the onset temperature of the system and negative values of the configurational entropy at lower temperatures. Interestingly, well below the temperature at which the configurational entropy vanishes, both the collective and the single-particle dynamics of the system show complete relaxation. Negative values of the configurational entropy are unphysical, and complete relaxation when the configurational entropy is zero violates the prediction of the random first-order transition theory (RFOT). However, the entropy calculated using the two-phase thermodynamics (2PT) method remains positive at all temperatures for which we can equilibrate the system, and its values are consistent with RFOT predictions. We find that with an increase in k, the difference in the entropy computed using the two methods increases. A similar effect is also observed for a system where a randomly selected fraction of the particles are pinned in their positions in the equilibrated liquid. We show that the difference in entropy calculated via the 2PT and TI methods increases with pinning density.

5.
Nat Nanotechnol ; 17(1): 98-106, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34795441

RESUMEN

Cancer progresses by evading the immune system. Elucidating diverse immune evasion strategies is a critical step in the search for next-generation immunotherapies for cancer. Here we report that cancer cells can hijack the mitochondria from immune cells via physical nanotubes. Mitochondria are essential for metabolism and activation of immune cells. By using field-emission scanning electron microscopy, fluorophore-tagged mitochondrial transfer tracing and metabolic quantification, we demonstrate that the nanotube-mediated transfer of mitochondria from immune cells to cancer cells metabolically empowers the cancer cells and depletes the immune cells. Inhibiting the nanotube assembly machinery significantly reduced mitochondrial transfer and prevented the depletion of immune cells. Combining a farnesyltransferase and geranylgeranyltransferase 1 inhibitor, namely, L-778123, which partially inhibited nanotube formation and mitochondrial transfer, with a programmed cell death protein 1 immune checkpoint inhibitor improved the antitumour outcomes in an aggressive immunocompetent breast cancer model. Nanotube-mediated mitochondrial hijacking can emerge as a novel target for developing next-generation immunotherapy agents for cancer.


Asunto(s)
Leucocitos/patología , Mitocondrias/metabolismo , Nanotubos/química , Neoplasias/patología , Animales , Secuencia de Bases , Línea Celular Tumoral , Humanos , Inmunidad , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Nanotubos/ultraestructura
6.
Nanophotonics ; 10(12): 3063-3073, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589378

RESUMEN

Targeted delivery of drugs to tumor cells, which circumvent resistance mechanisms and induce cell killing, is a lingering challenge that requires innovative solutions. Here, we provide two bioengineered strategies in which nanotechnology is blended with cancer medicine to preferentially target distinct mechanisms of drug resistance. In the first 'case study', we demonstrate the use of lipid-drug conjugates that target molecular signaling pathways, which result from taxane-induced drug tolerance via cell surface lipid raft accumulations. Through a small molecule drug screen, we identify a kinase inhibitor that optimally destroys drug tolerant cancer cells and conjugate it to a rationally-chosen lipid scaffold, which enhances anticancer efficacy in vitro and in vivo. In the second 'case study', we address resistance mechanisms that can occur through exocytosis of nanomedicines. Using adenocarcinoma HeLa and MCF-7 cells, we describe the use of gold nanorod and nanoporous vehicles integrated with an optical antenna for on-demand, photoactivation at ~650 nm enabling release of payloads into cells including cytotoxic anthracyclines. Together, these provide two approaches, which exploit engineering strategies capable of circumventing distinct resistance barriers and induce killing by multimodal, including nanophotonic mechanisms.

7.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200503

RESUMEN

The interaction of tumor cells with blood vessels is one of the key steps during cancer metastasis. Metastatic cancer cells exhibit phenotypic state changes during this interaction: (1) they form tunneling nanotubes (TNTs) with endothelial cells, which act as a conduit for intercellular communication; and (2) metastatic cancer cells change in order to acquire an elongated phenotype, instead of the classical cellular aggregates or mammosphere-like structures, which it forms in three-dimensional cultures. Here, we demonstrate mechanistically that a siRNA-based knockdown of the exocyst complex protein Sec3 inhibits TNT formation. Furthermore, a set of pharmacological inhibitors for Rho GTPase-exocyst complex-mediated cytoskeletal remodeling is introduced, which inhibits TNT formation, and induces the reversal of the more invasive phenotype of cancer cell (spindle-like) into a less invasive phenotype (cellular aggregates or mammosphere). Our results offer mechanistic insights into this nanoscale communication and shift of phenotypic state during cancer-endothelial interactions.


Asunto(s)
Neoplasias de la Mama/patología , Comunicación Celular , Endotelio Vascular/patología , Nanotubos/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Técnicas de Cultivo de Célula , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Femenino , Humanos , Metástasis de la Neoplasia , Fenotipo , Células Tumorales Cultivadas , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rho/genética
8.
Biochem Soc Trans ; 49(2): 761-773, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33860783

RESUMEN

Advanced microfabrication technologies and biocompatible hydrogel materials facilitate the modeling of 3D tissue microenvironment. Encapsulation of cells in hydrogel microparticles offers an excellent high-throughput platform for investigating multicellular interaction with their surrounding microenvironment. Compartmentalized microparticles support formation of various unique cellular structures. Alginate has emerged as one of the most dominant hydrogel materials for cell encapsulation owing to its cytocompatibility, ease of gelation, and biocompatibility. Alginate hydrogel provides a permeable physical boundary to the encapsulated cells and develops an easily manageable 3D cellular structure. The interior structure of alginate hydrogel can further regulate the spatiotemporal distribution of the embedded cells. This review provides a specific overview of the representative engineering approaches to generate various structures of cell-laden alginate microparticles in a uniform and reproducible manner. Capillary nozzle systems, microfluidic droplet systems, and non-chip based high-throughput microfluidic systems are highlighted for developing well-regulated cellular structure in alginate microparticles to realize potential drug screening platform and cell-based therapy. We conclude with the discussion of current limitations and future directions for realizing the translation of this technology to the clinic.


Asunto(s)
Alginatos/química , Materiales Biocompatibles/química , Técnicas de Cultivo Tridimensional de Células/métodos , Ingeniería Celular/métodos , Hidrogeles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Humanos , Células MCF-7 , Microfluídica/métodos , Tamaño de la Partícula , Reproducibilidad de los Resultados
9.
Hepatol Commun ; 5(2): 217-233, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553970

RESUMEN

Nonalcoholic steatohepatitis (NASH), an advanced stage of nonalcoholic fatty liver disease (NAFLD), is a rapidly growing and global health problem compounded by the current absence of specific treatments. A major limiting factor in the development of new NASH therapies is the absence of models that capture the unique cellular structure of the liver microenvironment and recapitulate the complexities of NAFLD progression to NASH. Organ-on-a-chip platforms have emerged as a powerful approach to dynamically model diseases and test drugs. Herein, we describe a NASH-on-a-chip platform. Four main types of human primary liver cells (hepatocytes [HCs], Kupffer cells, liver sinusoidal endothelial cells, and hepatic stellate cells [HSCs]) were cocultured under microfluidic dynamics. Our chip-based model successfully recapitulated a functional liver cellular microenvironment with stable albumin and urea secretion for at least 2 weeks. Exposing liver chips to a lipotoxic environment led to gradual development of NASH phenotypic characteristics, including intracellular lipid accumulation, hepatocellular ballooning, HSC activation, and elevation of inflammatory and profibrotic markers. Further, exposure of the chip to elafibranor, a drug under study for the therapy of NASH, inhibited the development of NASH-specific hallmarks, causing an ~8-fold decrease in intracellular lipids, a 3-fold reduction in number of ballooned HCs, a significant reduction in HSC activation, and a significant decrease in the levels of inflammatory and profibrotic markers compared with controls. Conclusion: We have successfully developed a microfluidic NASH-on-a-chip platform that recapitulates the main NASH histologic endpoints in a single chip and that can emerge as a powerful noninvasive, human-relevant, in vitro platform to study disease pathogenesis and develop novel anti-NASH drugs.


Asunto(s)
Técnicas de Cocultivo , Dispositivos Laboratorio en un Chip , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Chalconas/farmacología , Células Endoteliales/citología , Células Estrelladas Hepáticas/citología , Hepatocitos/citología , Humanos , Inflamación , Macrófagos del Hígado/citología , Hígado , Propionatos/farmacología
10.
Nucleic Acids Res ; 49(1): 221-243, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33300026

RESUMEN

Human genome stability requires efficient repair of oxidized bases, which is initiated via damage recognition and excision by NEIL1 and other base excision repair (BER) pathway DNA glycosylases (DGs). However, the biological mechanisms underlying detection of damaged bases among the million-fold excess of undamaged bases remain enigmatic. Indeed, mutation rates vary greatly within individual genomes, and lesion recognition by purified DGs in the chromatin context is inefficient. Employing super-resolution microscopy and co-immunoprecipitation assays, we find that acetylated NEIL1 (AcNEIL1), but not its non-acetylated form, is predominantly localized in the nucleus in association with epigenetic marks of uncondensed chromatin. Furthermore, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed non-random AcNEIL1 binding near transcription start sites of weakly transcribed genes and along highly transcribed chromatin domains. Bioinformatic analyses revealed a striking correspondence between AcNEIL1 occupancy along the genome and mutation rates, with AcNEIL1-occupied sites exhibiting fewer mutations compared to AcNEIL1-free domains, both in cancer genomes and in population variation. Intriguingly, from the evolutionarily conserved unstructured domain that targets NEIL1 to open chromatin, its damage surveillance of highly oxidation-susceptible sites to preserve essential gene function and to limit instability and cancer likely originated ∼500 million years ago during the buildup of free atmospheric oxygen.


Asunto(s)
Cromatina/fisiología , ADN Glicosilasas/metabolismo , Reparación del ADN , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/ultraestructura , ADN Glicosilasas/química , ADN Glicosilasas/fisiología , Reparación del ADN/genética , Conjuntos de Datos como Asunto , Evolución Molecular , Genes de Helminto , Genes Homeobox , Células HEK293 , Proteínas del Helminto/genética , Humanos , Invertebrados/genética , Invertebrados/metabolismo , Lisina/química , Mutación , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidad , Oxidación-Reducción , Proteoma , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sitio de Iniciación de la Transcripción , Vertebrados/genética , Vertebrados/metabolismo
11.
Front Microbiol ; 11: 2116, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013771

RESUMEN

The prevalence of drug-resistant pathogenic fungi is a major global health challenge. There is an urgent need for novel drugs that can exert a potent antifungal activity and overcome resistance. Newly discovered anti-fungal properties of existing compounds can potentially offer a rapid solution to address this persistent threat. We rationalized that structures which disrupt the fungal cell membrane could address the above unmet need. As fatty acids underpin the formation and stability of cell membranes, we used computational simulations to evaluate the interactions between selected short chain fatty acids and a model cell membrane. Here, we report that caprylic acid could penetrate and perturb the membrane in silico. Based on the in silico findings, we identified a derivative of this fatty acid that disrupts fungal membranes as detected using steady-state fluorescence anisotropy. We show that this fatty acid derivative is potent against a variety of fungal pathogens like Candida and Trichophyton. We further demonstrated the ability of this fatty acid derivative to potentiate some azoles in vitro and enhance the efficacy of antifungal formulations in vivo. Our data suggests the emergence of a novel therapy for effective disease management and overcoming anti-fungal drug resistance.

12.
DNA Repair (Amst) ; 93: 102931, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33087268

RESUMEN

In addition to the key roles of reversible acetylation of histones in chromatin in epigenetic regulation of gene expression, acetylation of nonhistone proteins by histone acetyltransferases (HATs) p300 and CBP is involved in DNA transactions, including repair of base damages and strand breaks. We characterized acetylation of human NEIL1 DNA glycosylase and AP-endonuclease 1 (APE1), which initiate repair of oxidized bases and single-strand breaks (SSBs), respectively. Acetylation induces localized conformation change because of neutralization of the positive charge of specific acetyl-acceptor Lys residues, which are often present in clusters. Acetylation in NEIL1, APE1, and possibly other base excision repair (BER)/SSB repair (SSBR) enzymes by HATs, prebound to chromatin, induces assembly of active repair complexes on the chromatin. In this review, we discuss the roles of acetylation of NEIL1 and APE1 in modulating their activities and complex formation with other proteins for fine-tuning BER in chromatin. Further, the implications of promoter/enhancer-bound acetylated BER protein complexes in the regulation of transcriptional activation, mediated by complex interplay of acetylation and demethylation of histones are discussed.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , ADN/metabolismo , Daño del ADN , Histona Acetiltransferasas/metabolismo , Humanos
13.
Adv Sci (Weinh) ; 7(19): 2001447, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33042756

RESUMEN

Immunotherapy is a class of promising anticancer treatments that has recently gained attention due to surging numbers of FDA approvals and extensive preclinical studies demonstrating efficacy. Nevertheless, further clinical implementation has been limited by high variability in patient response to different immunotherapeutic agents. These treatments currently do not have reliable predictors of efficacy and may lead to side effects. The future development of additional immunotherapy options and the prediction of patient-specific response to treatment require advanced screening platforms associated with accurate and rapid data interpretation. Advanced engineering approaches ranging from sequencing and gene editing, to tumor organoids engineering, bioprinted tissues, and organs-on-a-chip systems facilitate the screening of cancer immunotherapies by recreating the intrinsic and extrinsic features of a tumor and its microenvironment. High-throughput platform development and progress in artificial intelligence can also improve the efficiency and accuracy of screening methods. Here, these engineering approaches in screening cancer immunotherapies are highlighted, and a discussion of the future perspectives and challenges associated with these emerging fields to further advance the clinical use of state-of-the-art cancer immunotherapies are provided.

14.
Cancer Res ; 80(23): 5355-5366, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33077554

RESUMEN

Drug-induced resistance, or tolerance, is an emerging yet poorly understood failure of anticancer therapy. The interplay between drug-tolerant cancer cells and innate immunity within the tumor, the consequence on tumor growth, and therapeutic strategies to address these challenges remain undescribed. Here, we elucidate the role of taxane-induced resistance on natural killer (NK) cell tumor immunity in triple-negative breast cancer (TNBC) and the design of spatiotemporally controlled nanomedicines, which boost therapeutic efficacy and invigorate "disabled" NK cells. Drug tolerance limited NK cell immune surveillance via drug-induced depletion of the NK-activating ligand receptor axis, NK group 2 member D, and MHC class I polypeptide-related sequence A, B. Systems biology supported by empirical evidence revealed the heat shock protein 90 (Hsp90) simultaneously controls immune surveillance and persistence of drug-treated tumor cells. On the basis of this evidence, we engineered a "chimeric" nanotherapeutic tool comprising taxanes and a cholesterol-tethered Hsp90 inhibitor, radicicol, which targets the tumor, reduces tolerance, and optimally reprimes NK cells via prolonged induction of NK-activating ligand receptors via temporal control of drug release in vitro and in vivo. A human ex vivo TNBC model confirmed the importance of NK cells in drug-induced death under pressure of clinically approved agents. These findings highlight a convergence between drug-induced resistance, the tumor immune contexture, and engineered approaches that consider the tumor and microenvironment to improve the success of combinatorial therapy. SIGNIFICANCE: This study uncovers a molecular mechanism linking drug-induced resistance and tumor immunity and provides novel engineered solutions that target these mechanisms in the tumor and improve immunity, thus mitigating off-target effects.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Células Asesinas Naturales/efectos de los fármacos , Animales , Antineoplásicos Inmunológicos/química , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Colesterol/química , Docetaxel/administración & dosificación , Docetaxel/farmacocinética , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Resistencia a Antineoplásicos , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Macrólidos/química , Macrólidos/farmacocinética , Macrólidos/farmacología , Ratones Endogámicos BALB C , Terapia Molecular Dirigida/métodos , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/cirugía , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
15.
Nat Commun ; 11(1): 4863, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978393

RESUMEN

Amorphous solids have peculiar properties distinct from crystals. One of the most fundamental mysteries is the emergence of solidity in such nonequilibrium, disordered state without the protection by long-range translational order. A jammed system at zero temperature, although marginally stable, has solidity stemming from the space-spanning force network, which gives rise to the long-range stress correlation. Here, we show that such nonlocal correlation already appears at the nonequilibrium glass transition upon cooling. This is surprising since we also find that the system suffers from giant anharmonic fluctuations originated from the fractal-like potential energy landscape. We reveal that it is the percolation of the force-bearing network that allows long-range stress transmission even under such circumstance. Thus, the emergent solidity of amorphous materials is a consequence of nontrivial self-organisation of the disordered mechanical architecture. Our findings point to the significance of understanding amorphous solids and nonequilibrium glass transition from a mechanical perspective.

16.
Proc Natl Acad Sci U S A ; 117(36): 22183-22192, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32826329

RESUMEN

Among several reversible epigenetic changes occurring during transcriptional activation, only demethylation of histones and cytosine-phosphate-guanines (CpGs) in gene promoters and other regulatory regions by specific demethylase(s) generates reactive oxygen species (ROS), which oxidize DNA and other cellular components. Here, we show induction of oxidized bases and single-strand breaks (SSBs), but not direct double-strand breaks (DSBs), in the genome during gene activation by ligands of the nuclear receptor superfamily. We observed that these damages were preferentially repaired in promoters via the base excision repair (BER)/single-strand break repair (SSBR) pathway. Interestingly, BER/SSBR inhibition suppressed gene activation. Constitutive association of demethylases with BER/SSBR proteins in multiprotein complexes underscores the coordination of histone/DNA demethylation and genome repair during gene activation. However, ligand-independent transcriptional activation occurring during heat shock (HS) induction is associated with the generation of DSBs, the repair of which is likewise essential for the activation of HS-responsive genes. These observations suggest that the repair of distinct damages induced during diverse transcriptional activation is a universal prerequisite for transcription initiation. Because of limited investigation of demethylation-induced genome damage during transcription, this study suggests that the extent of oxidative genome damage resulting from various cellular processes is substantially underestimated.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Islas de CpG , Roturas del ADN de Cadena Simple , Daño del ADN/efectos de los fármacos , Desmetilación , Humanos , Ligandos , ARN Mensajero , Especies Reactivas de Oxígeno
18.
Front Oncol ; 10: 594141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33738243

RESUMEN

In American men, prostate cancer is the second leading cause of cancer-related death. Dissemination of prostate cancer cells to distant organs significantly worsens patients' prognosis, and currently there are no effective treatment options that can cure advanced-stage prostate cancer. In an effort to identify compounds selective for metastatic prostate cancer cells over benign prostate cancer cells or normal prostate epithelial cells, we applied a phenotype-based in vitro drug screening method utilizing multiple prostate cancer cell lines to test 1,120 different compounds from a commercial drug library. Top drug candidates were then examined in multiple mouse xenograft models including subcutaneous tumor growth, experimental lung metastasis, and experimental bone metastasis assays. A subset of compounds including fenbendazole, fluspirilene, clofazimine, niclosamide, and suloctidil showed preferential cytotoxicity and apoptosis towards metastatic prostate cancer cells in vitro and in vivo. The bioavailability of the most discerning agents, especially fenbendazole and albendazole, was improved by formulating as micelles or nanoparticles. The enhanced forms of fenbendazole and albendazole significantly prolonged survival in mice bearing metastases, and albendazole-treated mice displayed significantly longer median survival times than paclitaxel-treated mice. Importantly, these drugs effectively targeted taxane-resistant tumors and bone metastases - two common clinical conditions in patients with aggressive prostate cancer. In summary, we find that metastatic prostate tumor cells differ from benign prostate tumor cells in their sensitivity to certain drug classes. Taken together, our results strongly suggest that albendazole, an anthelmintic medication, may represent a potential adjuvant or neoadjuvant to standard therapy in the treatment of disseminated prostate cancer.

19.
Nat Biomed Eng ; 3(11): 917-929, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686001

RESUMEN

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with cytotoxic payloads. However, the present strategies for the synthesis of ADCs either yield unstable or heterogeneous products or involve complex processes. Here, we report a computational approach that leverages molecular docking and molecular dynamics simulations to design ADCs that self-assemble through the non-covalent binding of the antibody to a payload that we designed to act as an affinity ligand for specific conserved amino acid residues in the antibody. This method does not require modifications to the antibody structure and yields homogenous ADCs that form in less than 8 min. We show that two conjugates, which consist of hydrophilic and hydrophobic payloads conjugated to two different antibodies, retain the structure and binding properties of the antibody and its biological specificity, are stable in plasma and improve anti-tumour efficacy in mice with non-small cell lung tumour xenografts. The relative simplicity of the approach may facilitate the production of ADCs for the targeted delivery of cytotoxic payloads.


Asunto(s)
Anticuerpos/química , Citotoxinas/química , Diseño de Fármacos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Animales , Especificidad de Anticuerpos , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Fenómenos Químicos , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Ratones , Ratones Desnudos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias/tratamiento farmacológico , Ingeniería de Proteínas , Especificidad por Sustrato , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...