Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 10(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918601

RESUMEN

Subcellular fractionation approaches remain an indispensable tool among a large number of biochemical methods to facilitate the study of specific intracellular events and characterization of protein functions. During apoptosis, the best-known form of programmed cell death, numerous proteins are translocated into and from the nucleus. Therefore, suitable biochemical techniques for the subcellular fractionation of apoptotic cells are required. However, apoptotic bodies and cell fragments might contaminate the fractions upon using the standard protocols. Here, we compared different nucleus/cytoplasm fractionation methods and selected the best-suited approach for the separation of nuclear and cytoplasmic contents. The described methodology is based on stepwise lysis of cells and washing of the resulting nuclei using non-ionic detergents, such as NP-40. Next, we validated this approach for fractionation of cells treated with various apoptotic stimuli. Finally, we demonstrated that nuclear fraction could be further subdivided into nucleosolic and insoluble subfractions, which is crucial for the isolation and functional studies of various proteins. Altogether, we developed a method for simple and efficient nucleus/cytoplasm fractionation of both normal and apoptotic cells.


Asunto(s)
Apoptosis , Fraccionamiento Celular/métodos , Fracciones Subcelulares/metabolismo , Tampones (Química) , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Reproducibilidad de los Resultados , Solubilidad
2.
Cancers (Basel) ; 14(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35008345

RESUMEN

BH3 mimetics represent a promising tool in cancer treatment. Recently, the drugs targeting the Mcl-1 protein progressed into clinical trials, and numerous studies are focused on the investigation of their activity in various preclinical models. We investigated two BH3 mimetics to Mcl-1, A1210477 and S63845, and found their different efficacies in on-target doses, despite the fact that both agents interacted with the target. Thus, S63845 induced apoptosis more effectively through a Bak-dependent mechanism. There was an increase in the level of Bcl-xL protein in cells with acquired resistance to Mcl-1 inhibition. Cell lines sensitive to S63845 demonstrated low expression of Bcl-xL. Tumor tissues from patients with lung adenocarcinoma were characterized by decreased Bcl-xL and increased Bak levels of both mRNA and proteins. Concomitant inhibition of Bcl-xL and Mcl-1 demonstrated dramatic cytotoxicity in six of seven studied cell lines. We proposed that co-targeting Bcl-xL and Mcl-1 might lead to a release of Bak, which cannot be neutralized by other anti-apoptotic proteins. Surprisingly, in Bak-knockout cells, inhibition of Mcl-1 and Bcl-xL still resulted in pronounced cell death, arguing against a sole role of Bak in the studied phenomenon. We demonstrate that Bak and Bcl-xL are co-factors for, respectively, sensitivity and resistance to Mcl-1 inhibition.

3.
Front Cell Dev Biol ; 8: 543066, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072738

RESUMEN

As an important regulator of apoptosis, Mcl-1 protein, a member of the Bcl-2 family, represents an attractive target for cancer treatment. The recent development of novel small molecule compounds has allowed Mcl-1-inhibitory therapy to proceed to clinical trials in cancer treatment. However, the possible adverse effects of either direct inhibition of Mcl-1 or upregulation of Mcl-1S, proapoptotic isoform resulting from alternative splicing of Mcl-1, remain unclear. Here, we investigated changes in Mcl-1S levels during cell cycle and the cell cycle-related functions of Mcl-1 isoforms to address the above-mentioned concerns. It was shown that an anti-mitotic agent monastrol caused accumulation of Mcl-1S mRNA, although without increasing the protein level. In contrast, both mRNA and protein levels of Mcl-1S accrued during the premitotic stages of the normal cell cycle progression. Importantly, Mcl-1S was observed in the nuclear compartment and an overexpression of Mcl-1S, as well as knockdown of Mcl-1, accelerated the progression of cells into mitosis and resulted in DNA damage accumulation. Surprisingly, a small molecule inhibitor of Mcl-1, BH3-mimetic S63845, did not affect the cell cycle progression or the amount of DNA damage. In general, upregulated Mcl-1S protein or genetically inhibited Mcl-1L were associated with the cell cycle perturbations and DNA damage accumulation in normal and cancer cells. At the same time, BH3-mimetic to Mcl-1 did not affect the cell cycle progression, suggesting that direct inhibition of Mcl-1 is devoid of cell-cycle related undesired effects.

4.
Int Rev Cell Mol Biol ; 351: 23-55, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32247581

RESUMEN

During the last two decades, the study of Mcl-1, an anti-apoptotic member of the Bcl-2 family, attracted researchers due to its important role in cancer cell survival and tumor development. The significance of Mcl-1 protein in resistance to chemotherapeutics makes it an attractive target in cancer therapy. Here, we discuss the diverse possibilities for indirect Mcl-1 inhibition through its downregulation, for example, via targeting for proteasomal degradation or blockage of translation and transcription. We also provide an overview of the direct blocking of protein-protein interactions with pro-apoptotic Bcl-2 family proteins, including examples of the most promising regulators of Mcl-1 and selective BH3-mimetics, which at present are under clinical evaluation. Moreover, several approaches for the co-targeting of Mcl-1 and other proteins (e.g., CDKs) are also presented. In addition, we highlight the broad spectrum of problems that accompanied the discovery and development of effective Mcl-1 inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antineoplásicos/química , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Bibliotecas de Moléculas Pequeñas/química
5.
Cell Death Differ ; 27(2): 405-419, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907390

RESUMEN

The members of the Bcl-2 family are the central regulators of various cell death modalities. Some of these proteins contribute to apoptosis, while others counteract this type of programmed cell death, thus balancing cell demise and survival. A disruption of this balance leads to the development of various diseases, including cancer. Therefore, understanding the mechanisms that underlie the regulation of proteins of the Bcl-2 family is of great importance for biomedical research. Among the members of the Bcl-2 family, antiapoptotic protein Mcl-1 is characterized by a short half-life, which renders this protein highly sensitive to changes in its synthesis or degradation. Hence, the regulation of Mcl-1 is of particular scientific interest, and the study of Mcl-1 modulators could aid in the understanding of the mechanisms of disease development and the ways of their treatment. Here, we summarize the present knowledge regarding the regulation of Mcl-1, from transcription to degradation, focusing on aspects that have not yet been described in detail.


Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética
6.
Trends Cell Biol ; 29(7): 549-562, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31030977

RESUMEN

Among cell death regulators, members of the Bcl-2 family are of interest because they are highly conserved across species and represent promising targets for anticancer therapy. This family and its associated proteins include more than 25 members, with either anti- or proapoptotic functions. Although the overall regulation of apoptosis by Bcl-2 family proteins is now well understood, targeted therapy requires careful consideration of individual members of the family and their crosstalk. One of the most studied representatives of the Bcl-2 family is antiapoptotic Mcl-1. After 25 years of investigations, a large amount of data regarding Mcl-1's regulation and functions has been compiled. In this review, we summarize current knowledge about Mcl-1, focusing on molecular aspects relevant to Mcl-1-targeted therapies.


Asunto(s)
Antineoplásicos/farmacología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neoplasias/tratamiento farmacológico , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/patología
7.
Biochim Biophys Acta Gen Subj ; 1862(3): 557-566, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29203282

RESUMEN

BACKGROUND: The development of approaches that increase therapeutic effects of anti-cancer drugs is one of the most important tasks of oncology. Caloric restriction in vivo or serum deprivation (SD) in vitro has been shown to be an effective tool for sensitizing cancer cells to chemotherapeutic drugs. However, the detailed mechanisms underlying the enhancement of apoptosis in cancer cells by SD remain to be elucidated. METHODS: Flow cytometry, caspase activity assay and western blotting were used for cell death rate evaluation. Western blotting, gel-filtration, siRNA approach and qRT-PCR were used to elucidate the mechanism underlying cell death potentiation upon SD. RESULTS: We demonstrated that SD sensitizes cancer cells to treatment with chemotherapeutic agent cisplatin. This effect is independent on activation of caspases-2 and -8, apical caspases triggering apoptosis in response to genotoxic stress. SD potentiates cell death via downregulation of the anti-apoptotic protein Mcl-1. In fact, SD reduces the Mcl-1 mRNA level, which consequently decreases the Mcl-1 protein level and renders cells more susceptible to apoptosis induction via the formation of apoptosome. CONCLUSIONS: Mcl-1 protein is an important regulator of sensitivity of cancer cells to apoptotic stimuli upon SD. GENERAL SIGNIFICANCE: This study identifies Mcl-1 as a new target for the sensitization of human cancer cells to cell death by SD, which is of great significance for the development of efficient anti-cancer therapies.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Medio de Cultivo Libre de Suero/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Proteínas de Neoplasias/biosíntesis , Apoptosis/fisiología , Apoptosomas/fisiología , Caspasa 2/fisiología , Caspasa 8/fisiología , Línea Celular Tumoral , Cisteína Endopeptidasas/fisiología , Regulación hacia Abajo , Resistencia a Antineoplásicos/fisiología , Células HeLa , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/fisiología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...