Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Am Chem Soc ; 145(48): 26061-26067, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37978954

RESUMEN

On supercooling a liquid, the viscosity rises rapidly until at the glass transition it vitrifies into an amorphous solid accompanied by a steep drop in the heat capacity. Therefore, a pure homogeneous liquid is not expected to display more than one glass transition. Here we show that a family of single-component homogeneous molecular liquids, titanium tetraalkoxides, exhibit two calorimetric glass transitions of comparable magnitude, one of which is the conventional glass transition associated with dynamic arrest of the bulk liquid properties, while the other is associated with the freezing out of intramolecular degrees of freedom. Such intramolecular vitrification is likely to be found in molecules in which low-frequency terahertz intramolecular motion is coupled to the surrounding liquid. These results imply that intramolecular barrier-crossing processes, typically associated with chemical reactivity, do not necessarily follow the Arrhenius law but may freeze out at a finite temperature.

2.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220234, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37211033

RESUMEN

Vibrational spectroscopy is one of the most well-established and important techniques for characterizing chemical systems. To aid the interpretation of experimental infrared and Raman spectra, we report on recent theoretical developments in the ChemShell computational chemistry environment for modelling vibrational signatures. The hybrid quantum mechanical and molecular mechanical approach is employed, using density functional theory for the electronic structure calculations and classical forcefields for the environment. Computational vibrational intensities at chemical active sites are reported using electrostatic and fully polarizable embedding environments to achieve more realistic vibrational signatures for materials and molecular systems, including solvated molecules, proteins, zeolites and metal oxide surfaces, providing useful insight into the effect of the chemical environment on the signatures obtained from experiment. This work has been enabled by the efficient task-farming parallelism implemented in ChemShell for high-performance computing platforms.  This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

3.
Phys Chem Chem Phys ; 25(33): 21816-21835, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37097706

RESUMEN

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.

5.
Nat Commun ; 14(1): 215, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639380

RESUMEN

A common feature of glasses is the "boson peak", observed as an excess in the heat capacity over the crystal or as an additional peak in the terahertz vibrational spectrum. The microscopic origins of this peak are not well understood; the emergence of locally ordered structures has been put forward as a possible candidate. Here, we show that depolarised Raman scattering in liquids consisting of highly symmetric molecules can be used to isolate the boson peak, allowing its detailed observation from the liquid into the glass. The boson peak in the vibrational spectrum matches the excess heat capacity. As the boson peak intensifies on cooling, wide-angle x-ray scattering shows the simultaneous appearance of a pre-peak due to molecular clusters consisting of circa 20 molecules. Atomistic molecular dynamics simulations indicate that these are caused by over-coordinated molecules. These findings represent an essential step toward our understanding of the physics of vitrification.

6.
Chem Sci ; 12(32): 10956-10957, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34491252

RESUMEN

[This corrects the article DOI: 10.1039/C4SC01605J.].

7.
Phys Chem Chem Phys ; 23(23): 13250-13260, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34095914

RESUMEN

Low-frequency vibrations play an essential role in biomolecular processes involving DNA such as gene expression, charge transfer, drug intercalation, and DNA-protein recognition. However, understanding the vibrational basis of these mechanisms relies on theoretical models due to the lack of experimental evidence. Here we present the low-frequency vibrational spectra of G-quadruplexes (structures formed by four strands of DNA) and B-DNA characterized using femtosecond optical Kerr-effect spectroscopy. Contrary to expectation, we found that G-quadruplexes show several strongly underdamped delocalized phonon-like modes that have the potential to contribute to the biology of the DNA at the atomic level. In addition, G-quadruplexes present modes at a higher frequency than B-DNA demonstrating that changes in the stiffness of the molecule alter its gigahertz to terahertz vibrational profile.


Asunto(s)
ADN/química , G-Cuádruplex , Modelos Moleculares , Conformación de Ácido Nucleico , Vibración
8.
Nat Chem ; 13(4): 297-299, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33785885
9.
Front Chem ; 8: 783, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33033715

RESUMEN

There is considerable interest in developing drugs and probes targeted to mitochondria in order to understand and treat the many pathologies associated with mitochondrial dysfunction. The large membrane potential, negative inside, across the mitochondrial inner membrane enables delivery of molecules conjugated to lipophilic phosphonium cations to the organelle. Due to their combination of charge and hydrophobicity, quaternary triarylphosphonium cations rapidly cross biological membranes without the requirement for a carrier. Their extent of uptake is determined by the magnitude of the mitochondrial membrane potential, as described by the Nernst equation. To further enhance this uptake here we explored whether incorporation of a carboxylic acid into a quaternary triarylphosphonium cation would enhance its mitochondrial uptake in response to both the membrane potential and the mitochondrial pH gradient (alkaline inside). Accumulation of arylpropionic acid derivatives depended on both the membrane potential and the pH gradient. However, acetic or benzoic derivatives did not accumulate, due to their lowered pKa. Surprisingly, despite not being taken up by mitochondria, the phenylacetic or phenylbenzoic derivatives were not retained within mitochondria when generated within the mitochondrial matrix by hydrolysis of their cognate esters. Computational studies, supported by crystallography, showed that these molecules passed through the hydrophobic core of mitochondrial inner membrane as a neutral dimer. This finding extends our understanding of the mechanisms of membrane permeation of lipophilic cations and suggests future strategies to enhance drug and probe delivery to mitochondria.

10.
J Am Chem Soc ; 142(16): 7591-7597, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32249557

RESUMEN

Liquid-liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid-liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored structures inhibiting crystallization. However, there is precious little information about the local molecular packing in supercooled liquids, meaning that the order parameter of the transition is still unknown. Here, we investigate the liquid-liquid transition in triphenyl phosphite and show that it is caused by the competition between liquid structures that mirror two crystal polymorphs. The liquid-liquid transition is found to be between a geometrically frustrated liquid and a dynamically frustrated glass. These results indicate a general link between polymorphism and polyamorphism and will lead to a much greater understanding of the physical basis of liquid-liquid transitions and allow the systematic discovery of other examples.

11.
J Org Chem ; 84(1): 346-364, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30520304

RESUMEN

A simple and effective one-pot, two-step intramolecular aryl C-N and C-O bond forming process for the preparation of a wide range of benzo-fused heterocyclic scaffolds using iron and copper catalysis is described. Activated aryl rings were subjected to a highly regioselective, iron(III) triflimide-catalyzed iodination, followed by a copper(I)-catalyzed intramolecular N- or O-arylation step leading to indolines, dihydrobenzofurans, and six-membered analogues. The general applicability and functional group tolerance of this method were exemplified by the total synthesis of the neolignan natural product, (+)-obtusafuran. DFT calculations using Fukui functions were also performed, providing a molecular orbital rationale for the highly regioselective arene iodination process.

12.
Org Biomol Chem ; 16(21): 3970-3982, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29761822

RESUMEN

A novel method for the stereoselective construction of hexahydroazuleno[4,5-b]furans from simple precursors has been developed. The route involves the use of our recently developed Brønsted acid catalysed cyclisation reaction of acyclic ynenones to prepare fused 1-furanyl-2-alkenylcyclopropanes that undergo highly stereoselective thermal Cope rearrangement to produce fused tricyclic products. Substrates possessing an E-alkene undergo smooth Cope rearrangement at 40 °C, whereas the corresponding Z-isomers do not react at this temperature. Computational studies have been performed to explain the difference in behaviour of the E- and Z-isomers in the Cope rearrangement reaction. The hexahydroazuleno[4,5-b]furans produced by Cope rearrangement have potential as advanced intermediates for the synthesis of members of the guaianolide family of natural products.

13.
Cell Chem Biol ; 24(10): 1285-1298.e12, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28890317

RESUMEN

Mitochondrial superoxide (O2⋅-) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅-, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅- probe, MitoNeoD, which can assess O2⋅- changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅--sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅- over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅- from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅- production in health and disease.


Asunto(s)
Mitocondrias/metabolismo , Sondas Moleculares/metabolismo , Superóxidos/metabolismo , Animales , Transporte Biológico , Línea Celular , ADN/química , ADN/metabolismo , Masculino , Espectrometría de Masas , Ratones , Modelos Moleculares , Sondas Moleculares/química , Conformación de Ácido Nucleico , Oxidación-Reducción
14.
R Soc Open Sci ; 4(8): 170593, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28879000

RESUMEN

The copper-containing nitrite reductases (CuNIRs) are a class of enzymes that mediate the reduction of nitrite to nitric oxide in biological systems. Metal-ligand complexes that reproduce the salient features of the active site of CuNIRs are therefore of fundamental interest, both for elucidating the possible mode of action of the enzymes and for developing biomimetic catalysts for nitrite reduction. Herein, we describe the synthesis and characterization of a new tris(2-pyridyl) copper complex ([Cu1(NO2)2]) that binds two molecules of nitrite, and displays all three of the common binding modes for [Formula: see text], with one nitrite bound in an asymmetric quasi-bidentate κ2-ONO manner and the other bound in a monodentate fashion with a linkage isomerism between the κ1-ONO and κ1-NO2 binding modes. We use density functional theory to help rationalize the presence of all three of these linkage isomers in one compound, before assessing the redox activity of [Cu1(NO2)2]. These latter studies show that the complex is not a competent nitrite reduction electrocatalyst in non-aqueous solvent, even in the presence of additional proton donors, a finding which may have implications for the design of biomimetic catalysts for nitrite reduction.

15.
Methods Mol Biol ; 1641: 229-258, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28748468

RESUMEN

Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Cromatografía de Gases y Espectrometría de Masas , Metaboloma
16.
Dalton Trans ; 45(39): 15575-15585, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27722641

RESUMEN

Complexes of Co(iii) containing mixed chelating diimine and o-quinone ligand sets are of fundamental interest on account of their fascinating magnetic and electronic properties. Whilst complexes of this type containing one diimine and two o-quinone ligands have been studied extensively, those with the reverse stoichiometry (two diimines and one o-quinone) are much rarer. Herein, we describe a ready route to the synthesis of the complex [CoIII(o-catecholate) (2,2'-bipyridine)2]+ (1), and also report the synthesis of [CoIII(o-catecholate)(5,5'-dimethyl-2,2'-bipyridine)2]+ (2) and [CoIII(o-benezenedithiolate)(5,5'-dimethyl-2,2'-bipyridine)2]+ (3) for the first time. Spectroscopic studies show that complex 2 displays intriguing solvatochromic behaviour as a function of solvent hydrogen bond donation ability, a property of this type of complex which has hitherto not been reported. Time-dependent density function theory (TD-DFT) shows that this effect arises as a result of hydrogen bonding between the solvent and the oxygen atoms of the catecholate ligand. In contrast, the sulfur atoms in the benzenedithiolate analogue 3 are much weaker acceptors of hydrogen bonds from the solvent, meaning that complex 3 is only very weakly solvatochromic. Finally, we show that complex 2 has some potential as a molecular probe that can report on the composition of mixed solvent systems as a function of its absorbance spectrum.

17.
Artículo en Inglés | MEDLINE | ID: mdl-26830795

RESUMEN

Analysis of neutron and high-resolution X-ray diffraction data on form (III) of carbamazepine at 100 K using the atoms in molecules (AIM) topological approach afforded excellent agreement between the experimental results and theoretical densities from the optimized gas-phase structure and from multipole modelling of static theoretical structure factors. The charge density analysis provides experimental confirmation of the partially localized π-bonding suggested by the conventional structural formula, but the evidence for any significant C-N π bonding is not strong. Hirshfeld atom refinement (HAR) gives H atom positional and anisotropic displacement parameters that agree very well with the neutron parameters. X-ray and neutron diffraction data on the dihydrate of carbemazepine strongly indicate a disordered orthorhombic crystal structure in the space group Cmca, rather than a monoclinic crystal structure in space group P2(1)/c. This disorder in the dihydrate structure has implications for both experimental and theoretical studies of polymorphism.


Asunto(s)
Carbamazepina/análisis , Carbamazepina/química , Cristalización , Cristalografía por Rayos X/métodos , Electrones , Enlace de Hidrógeno , Modelos Moleculares , Difracción de Rayos X/métodos
18.
Free Radic Biol Med ; 89: 883-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26454075

RESUMEN

Superoxide is the proximal reactive oxygen species (ROS) produced by the mitochondrial respiratory chain and plays a major role in pathological oxidative stress and redox signaling. While there are tools to detect or decrease mitochondrial superoxide, none can rapidly and specifically increase superoxide production within the mitochondrial matrix. This lack impedes progress, making it challenging to assess accurately the roles of mitochondrial superoxide in cells and in vivo. To address this unmet need, we synthesized and characterized a mitochondria-targeted redox cycler, MitoParaquat (MitoPQ) that comprises a triphenylphosphonium lipophilic cation conjugated to the redox cycler paraquat. MitoPQ accumulates selectively in the mitochondrial matrix driven by the membrane potential. Within the matrix, MitoPQ produces superoxide by redox cycling at the flavin site of complex I, selectively increasing superoxide production within mitochondria. MitoPQ increased mitochondrial superoxide in isolated mitochondria and cells in culture ~a thousand-fold more effectively than untargeted paraquat. MitoPQ was also more toxic than paraquat in the isolated perfused heart and in Drosophila in vivo. MitoPQ enables the selective generation of superoxide within mitochondria and is a useful tool to investigate the many roles of mitochondrial superoxide in pathology and redox signaling in cells and in vivo.


Asunto(s)
Herbicidas/farmacología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Superóxidos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Complejo I de Transporte de Electrón , Femenino , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Oxidación-Reducción , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Front Chem ; 2: 98, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25426489

RESUMEN

The halogenases are a group of enzymes that have only come to the fore over the last 10 years thanks to the discovery and characterization of several novel representatives. They have revealed the fascinating variety of distinct chemical mechanisms that nature utilizes to activate halogens and introduce them into organic substrates. Computational studies using a range of approaches have already elucidated many details of the mechanisms of these enzymes, often in synergistic combination with experiment. This Review summarizes the main insights gained from these studies. It also seeks to identify open questions that are amenable to computational investigations. The studies discussed herein serve to illustrate some of the limitations of the current computational approaches and the challenges encountered in computational mechanistic enzymology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...