Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38666365

RESUMEN

The stimulus-responsive behavior of coordination networks (CNs), which switch between closed (nonporous) and open (porous) phases, is of interest because of its potential utility in gas storage and separation. Herein, we report two polymorphs of a new square-lattice (sql) topology CN, X-sql-1-Cu, of formula [Cu(Imibz)2]n (HImibz = {[4-(1H-imidazol-1-yl)phenylimino]methyl}benzoic acid), isolated from the as-synthesized CN X-sql-1-Cu-(MeOH)2·2MeOH, which subsequently transformed to a narrow pore solvate, X-sql-1-Cu-A·MeOH, upon mild activation (drying in air or heating at 333 K under nitrogen). X-sql-1-Cu-A·MeOH contains MeOH in cavities, which was removed through exposure to vacuum for 2 h, yielding the nonporous (closed) phase X-sql-1-Cu-A. In contrast, a more dense polymorph, X-sql-1-Cu-B, was obtained by exposing X-sql-1-Cu-(MeOH)2·2MeOH directly to vacuum for 2 h. Gas sorption studies conducted on X-sql-1-Cu-A and X-sql-1-Cu-B revealed different switching behaviors to two open phases (X-sql-1-Cu·CO2 and X-sql-1-Cu·C2H2), with different gate-opening threshold pressures for CO2 at 195 K and C2H2 at 278 K. Coincident CO2 sorption and in situ powder X-ray diffraction studies at 195 K revealed that X-sql-1-Cu-A transformed to X-sql-1-Cu-B after the first sorption cycle and that the CO2-induced switching transformation was thereafter reversible. The results presented herein provide insights into the relationship between two polymorphs of a CN and the effect of polymorphism upon gas sorption properties. To the best of our knowledge, whereas sql networks such as X-sql-1-Cu are widely studied in terms of their structural and sorption properties, this study represents only the second example of an in-depth study of the sorption properties of polymorphic sql networks.

2.
Cryst Growth Des ; 24(6): 2573-2579, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38525104

RESUMEN

Porous coordination networks (PCNs) sustained by inorganic anions that serve as linker ligands can offer high selectivity toward specific gases or vapors in gas mixtures. Such inorganic anions are best exemplified by electron-rich fluorinated anions, e.g., SiF62-, TiF62-, and NbOF52-, although sulfate anions have recently been highlighted as inexpensive and earth-friendly alternatives. Herein, we report the use of a rare copper sulfate dimer molecular building block to generate two square lattice, sql, coordination networks which can be prepared via solvent layering or slurrying, CuSO4(1,4-bib)1.5, 1, (1,4-bib = 1,4-bisimidazole benzene) and CuSO4(1,4-bin)1.5, 2, (1,4-bin = 1,4-bisimidazole naphthalene). Variable-temperature SCXRD and PXRD experiments revealed that both sql networks underwent reversible structural transformations due to linker rotations or internetwork displacements. Gas sorption studies conducted upon the narrow-pore phase of CuSO4(1,4-bin)1.5, 2np, found a high calculated 1:99 selectivity for C2H2 over C2H4 (33.01) and CO2 (15.18), as well as strong breakthrough performance. Across-the-board, C3H4 selectivity vs C3H6, CO2, and C3H8 was also observed. Sulfate-based PCNs, although still understudied, appear increasingly likely to offer utility in gas and vapor separations.

3.
ACS Appl Mater Interfaces ; 16(4): 4803-4810, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38258417

RESUMEN

Hybrid ultramicroporous materials (HUMs), metal-organic platforms that incorporate inorganic pillars, are a promising class of porous solids. A key area of interest for such materials is gas separation, where HUMs have already established benchmark performances. Thanks to their ready compositional modularity, we report the design and synthesis of a new HUM, GEFSIX-21-Cu, incorporating the ligand pypz (4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, 21) and GeF62- pillaring anions. GEFSIX-21-Cu delivers on two fronts: first, it displays an exceptionally high C2H2 adsorption capacity (≥5 mmol g-1) which is paired with low uptake of CO2 (<2 mmol g-1), and, second, a low enthalpy of adsorption for C2H2 (ca. 32 kJ mol-1). This combination is rarely seen in the C2H2 selective physisorbents reported thus far, and not observed in related isostructural HUMs featuring pypz and other pillaring anions. Dynamic column breakthrough experiments for 1:1 and 2:1 C2H2/CO2 mixtures revealed GEFSIX-21-Cu to selectively separate C2H2 from CO2, yielding ≥99.99% CO2 effluent purities. Temperature-programmed desorption experiments revealed full sorbent regeneration in <35 min at 60 °C, reinforcing HUMs as potentially technologically relevant materials for strategic gas separations.

4.
ACS Mater Lett ; 6(1): 56-65, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38178981

RESUMEN

Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.

5.
J Am Chem Soc ; 145(50): 27316-27324, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055597

RESUMEN

High and increasing production of separation of C8 aromatic isomers demands the development of purification methods that are efficient, scalable, and inexpensive, especially for p-xylene, PX, the largest volume C8 commodity. Herein, we report that 4-(1H-1,2,4-triazol-1-yl)-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (TPBD), a molecular compound that can be prepared and scaled up via solid-state synthesis, exhibits exceptional PX selectivity over each of the other C8 isomers, o-xylene (OX), m-xylene (MX), and ethylbenzene (EB). The apohost or α form of TPBD was found to exhibit conformational polymorphism in the solid state enabled by rotation of its triazole and benzene rings. TPBD-αI and TPBD-αII are nonporous polymorphs that transformed to the same PX inclusion compound, TPBD-PX, upon contact with liquid PX. TPBD enabled highly selective capture of PX, as established by competitive slurry experiments involving various molar ratios in binary, ternary, and quaternary mixtures of C8 aromatics. Binary selectivity values for PX as determined by 1H NMR spectroscopy and gas chromatography ranged from 22.4 to 108.4, setting new benchmarks for both PX/MX (70.3) and PX/EB (59.9) selectivity as well as close to benchmark selectivity for PX/OX (108.4). To our knowledge, TPBD is the first material of any class to exhibit such high across-the-board PX selectivity from quaternary mixtures of C8 aromatics under ambient conditions. Crystallographic and computational studies provide structural insight into the PX binding site in TPBD-PX, whereas thermal stability and capture kinetics were determined by variable-temperature powder X-ray diffraction and slurry tests, respectively. That TPBD offers benchmark PX selectivity and facile recyclability makes it a prototypal molecular compound for PX purification or capture under ambient conditions.

6.
J Mater Chem A Mater ; 11(30): 16019-16026, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38013758

RESUMEN

Compared to rigid physisorbents, switching coordination networks that reversibly transform between closed (non-porous) and open (porous) phases offer promise for gas/vapour storage and separation owing to their improved working capacity and desirable thermal management properties. We recently introduced a coordination network, X-dmp-1-Co, which exhibits switching enabled by transient porosity. The resulting "open" phases are generated at threshold pressures even though they are conventionally non-porous. Herein, we report that X-dmp-1-Co is the parent member of a family of transiently porous coordination networks [X-dmp-1-M] (M = Co, Zn and Cd) and that each exhibits transient porosity but switching events occur at different threshold pressures for CO2 (0.8, 2.1 and 15 mbar, for Co, Zn and Cd, respectively, at 195 K), H2O (10, 70 and 75% RH, for Co, Zn and Cd, respectively, at 300 K) and CH4 (<2, 10 and 25 bar, for Co, Zn and Cd, respectively, at 298 K). Insight into the phase changes is provided through in situ SCXRD and in situ PXRD. We attribute the tuning of gate-opening pressure to differences and changes in the metal coordination spheres and how they impact dpt ligand rotation. X-dmp-1-Zn and X-dmp-1-Cd join a small number of coordination networks (<10) that exhibit reversible switching for CH4 between 5 and 35 bar, a key requirement for adsorbed natural gas storage.

7.
Chem Commun (Camb) ; 59(93): 13867-13870, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37930365

RESUMEN

Herein, we introduce a new square lattice topology coordination network, sql-(1,3-bib)(ndc)-Ni, with three types of connection and detail its gas and vapour induced phase transformations. Exposure to humidity resulted in an S-shaped isotherm profile, suggesting potential utility of such materials as desiccants.

8.
Cryst Growth Des ; 23(11): 8139-8146, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37937187

RESUMEN

Chiral metal-organic materials, CMOMs, are of interest as they can offer selective binding sites for chiral guests. Such binding sites can enable CMOMs to serve as chiral crystalline sponges (CCSs) to determine molecular structure and/or purify enantiomers. We recently reported on the chiral recognition properties of a homochiral cationic diamondoid, dia, network {[Ni(S-IDEC)(bipy)(H2O)][NO3]}n (S-IDEC = S-indoline-2-carboxylicate, bipy = 4,4'-bipyridine), CMOM-5[NO3]. The modularity of CMOM-5[NO3] means there are five feasible approaches to fine-tune structures and properties via substitution of one or more of the following components: metal cation (Ni2+); bridging ligand (S-IDEC); linker (bipy); extra-framework anion (NO3-); and terminal ligand (H2O). Herein, we report the effect of anion substitution on the CCS properties of CMOM-5[NO3] by preparing and characterizing {[Ni(S-IDEC)(bipy)(H2O)][BF4]}n, CMOM-5[BF4]. The chiral channels in CMOM-5[BF4] enabled it to function as a CCS for determination of the absolute crystal structures of both enantiomers of three chiral compounds: 1-phenyl-1-butanol (1P1B); methyl mandelate (MM); ethyl mandelate (EM). Chiral resolution experiments revealed CMOM-5[BF4] to be highly selective toward the S-isomers of MM and EM with enantiomeric excess, ee, values of 82.6 and 78.4%, respectively. The ee measured for S-EM surpasses the 64.3% exhibited by [DyNaL(H2O)4] 6H2O and far exceeds that of CMOM-5[NO3] (6.0%). Structural studies of the binding sites in CMOM-5[BF4] provide insight into their high enantioselectivity.

9.
ACS Mater Lett ; 5(9): 2567-2575, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37680544

RESUMEN

Gas or vapor-induced phase transformations in flexible coordination networks (CNs) offer the potential to exceed the performance of their rigid counterparts for separation and storage applications. However, whereas ligand modification has been used to alter the properties of such stimulus-responsive materials, they remain understudied compared with their rigid counterparts. Here, we report that a family of Zn2+ CNs with square lattice (sql) topology, differing only through the substituents attached to a linker, exhibit variable flexibility. Structural and CO2 sorption studies on the sql networks, [Zn(5-Ria)(bphy)]n, ia = isophthalic acid, bphy = 1,2-bis(pyridin-4-yl)hydrazine, R = -CH3, -OCH3, -C(CH3)3, -N=N-Ph, and -N=N-Ph(CH3)2, 2-6, respectively, revealed that the substituent moieties influenced both structural and gas sorption properties. Whereas 2-3 exhibited rigidity, 4, 5, and 6 exhibited reversible transformation from small pore to large pore phases. Overall, the insight into the profound effect of pendent moieties of linkers upon phase transformations in this family of layered CNs should be transferable to other CN classes.

10.
CrystEngComm ; 25(29): 4175-4181, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37492238

RESUMEN

Bifunctional N-donor carboxylate linkers generally afford dia and sql topology coordination networks of general formula ML2 that are based upon the MN2(CO2)2 molecular building block (MBB). Herein, we report on a new N-donor carboxylate linker, ß-(3,4-pyridinedicarboximido)propionate (PyImPr), which afforded Cd(PyImPr)2via reaction of PyImPrH with Cd(acetate)2·2H2O. We observed that, depending upon whether Cd(PyImPr)2 was prepared by layering or solvothermal methods, 2D or 3D supramolecular isomers, respectively, of Cd(PyImPr)2 were isolated. Single crystal X-ray diffraction studies revealed that both supramolecular isomers are comprised of the same carboxylate bridged rod building block, RBB. We were interested to determine if the ethylene moiety of PyImPr could enable structural flexibility. Indeed, open-to-closed structural transformations occurred upon solvent removal for both phases, but they were found to be irreversible. A survey of the Cambridge Structural Database (CSD) was conducted to analyse the relative frequency of RBB topologies in related ML2 coordination networks in order to provide insight from a crystal engineering perspective.

11.
Angew Chem Int Ed Engl ; 62(42): e202307436, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319321

RESUMEN

The 3D hybrid framework [{Cu(cyclam)}3 (κ-Mo8 O27 )] ⋅ 14H2 O (1) (cyclam=1,4,8,11-tetraazacyclotetradecane) undergoes sequential single-crystal-to-single-crystal transformations upon heating to afford two different anhydrous phases (2 a and 3 a). These transitions modify the framework dimensionality and enable the isomerization of κ-octamolybdate (κ-Mo8 ) anions into λ (2 a) and µ (3 a) forms through metal migration. Hydration of 3 a involves condensation of one water molecule to the cluster to afford the γ-Mo8 isomer in 4, which dehydrates back into 3 a through the 6 a intermediate. In contrast, 2 a reversibly hydrates to form 5, exhibiting the same Mo8 cluster as that of 1. It is remarkable that three of the Mo8 clusters (κ, λ and µ) are new and that up to three different microporous phases can be isolated from 1 (2 a, 3 a, and 6 a). Water vapor sorption analyses show high recyclability and the highest uptake values for POM-based systems. The isotherms display an abrupt step at low humidity level desirable for humidity control devices or water harvesting in drylands.

12.
J Mater Chem A Mater ; 11(17): 9691-9699, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37153821

RESUMEN

In this work, we report the synthesis, structural characterisation and sorption properties of an 8-fold interpenetrated diamondoid (dia) metal-organic framework (MOF) that is sustained by a new extended linker ligand, [Cd(Imibz)2], X-dia-2-Cd, HImibz or 2 = 4-((4-(1H-imidazol-1-yl)phenylimino)methyl)benzoic acid. X-dia-2-Cd was found to exhibit reversible single-crystal-to-single-crystal (SC-SC) transformations between four distinct phases: an as-synthesised (from N,N-dimethylformamide) wide-pore phase, X-dia-2-Cd-α; a narrow-pore phase, X-dia-2-Cd-ß, formed upon exposure to water; a narrow-pore phase obtained by activation, X-dia-2-Cd-γ; a medium-pore CO2-loaded phase X-dia-2-Cd-δ. While the space group remained constant in the four phases, the cell volumes and calculated void space ranged from 4988.7 Å3 and 47% (X-dia-2-Cd-α), respectively, to 3200.8 Å3 and 9.1% (X-dia-2-Cd-γ), respectively. X-dia-2-Cd-γ also exhibited a water vapour-induced structural transformation to the water-loaded X-dia-2-Cd-ß phase, resulting in an S-shaped sorption isotherm. The inflection point occurred at 18% RH with negligible hysteresis on the desorption profile. Water vapour temperature-humidity swing cycling (60% RH, 300 K to 0% RH, 333 K) indicated hydrolytic stability of X-dia-2-Cd and working capacity was retained after 128 cycles of sorbent regeneration. CO2 (at 195 K) was also observed to induce a structural transformation in X-dia-2-Cd-γ and in situ PXRD studies at 1 bar of CO2, 195 K revealed the formation of X-dia-2-Cd-δ, which exhibited 31% larger unit cell volume than X-dia-2-Cd-γ.

13.
Chem Mater ; 35(9): 3660-3670, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37181677

RESUMEN

In this work, we present the first metal-organic framework (MOF) platform with a self-penetrated double diamondoid (ddi) topology that exhibits switching between closed (nonporous) and open (porous) phases induced by exposure to gases. A crystal engineering strategy, linker ligand substitution, was used to control gas sorption properties for CO2 and C3 gases. Specifically, bimbz (1,4-bis(imidazol-1-yl)benzene) in the coordination network X-ddi-1-Ni ([Ni2(bimbz)2(bdc)2(H2O)]n, H2bdc = 1,4-benzenedicarboxylic acid) was replaced by bimpz (3,6-bis(imidazol-1-yl)pyridazine) in X-ddi-2-Ni ([Ni2(bimpz)2(bdc)2(H2O)]n). In addition, the 1:1 mixed crystal X-ddi-1,2-Ni ([Ni2(bimbz)(bimpz)(bdc)2(H2O)]n) was prepared and studied. All three variants form isostructural closed (ß) phases upon activation which each exhibited different reversible properties upon exposure to CO2 at 195 K and C3 gases at 273 K. For CO2, X-ddi-1-Ni revealed incomplete gate-opening, X-ddi-2-Ni exhibited a stepped isotherm with saturation uptake of 3.92 mol·mol-1, and X-ddi-1,2-Ni achieved up to 62% more gas uptake and a distinct isotherm shape vs the parent materials. Single-crystal X-ray diffraction (SCXRD) and in situ powder X-ray diffraction (PXRD) experiments provided insight into the mechanisms of phase transformation and revealed that the ß phases are nonporous with unit cell volumes 39.9, 40.8, and 41.0% lower than the corresponding as-synthesized α phases, X-ddi-1-Ni-α, X-ddi-2-Ni-α, and X-ddi-1,2-Ni-α, respectively. The results presented herein represent the first report of reversible switching between closed and open phases in ddi topology coordination networks and further highlight how ligand substitution can profoundly impact the gas sorption properties of switching sorbents.

14.
J Am Chem Soc ; 145(21): 11837-11845, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204941

RESUMEN

Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C3H4/C3H6 separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C3H4/C3H6 selectivity (270) and a new benchmark for productivity (118 mmol g-1) of polymer grade C3H6 (purity >99.99%) from a 1:99 C3H4/C3H6 mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding "sweet spot" for C3H4 in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C3H4 and C3H6 molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent.

15.
J Am Chem Soc ; 145(18): 10197-10207, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37099724

RESUMEN

Coordination networks (CNs) that undergo gas-induced transformation from closed (nonporous) to open (porous) structures are of potential utility in gas storage applications, but their development is hindered by limited control over their switching mechanisms and pressures. In this work, we report two CNs, [Co(bimpy)(bdc)]n (X-dia-4-Co) and [Co(bimbz)(bdc)]n (X-dia-5-Co) (H2bdc = 1,4-benzendicarboxylic acid; bimpy = 2,5-bis(1H-imidazole-1-yl)pyridine; bimbz = 1,4-bis(1H-imidazole-1-yl)benzene), that both undergo transformation from closed to isostructural open phases involving at least a 27% increase in cell volume. Although X-dia-4-Co and X-dia-5-Co only differ from one another by one atom in their N-donor linkers (bimpy = pyridine, and bimbz = benzene), this results in different pore chemistry and switching mechanisms. Specifically, X-dia-4-Co exhibited a gradual phase transformation with a steady increase in the uptake when exposed to CO2, whereas X-dia-5-Co exhibited a sharp step (type F-IV isotherm) at P/P0 ≈ 0.008 or P ≈ 3 bar (195 or 298 K, respectively). Single-crystal X-ray diffraction, in situ powder XRD, in situ IR, and modeling (density functional theory calculations, and canonical Monte Carlo simulations) studies provide insights into the nature of the switching mechanisms and enable attribution of pronounced differences in sorption properties to the changed pore chemistry.

16.
Angew Chem Int Ed Engl ; 62(19): e202219039, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36877859

RESUMEN

An emerging strategy in the design of efficient gas storage technologies is the development of stimuli-responsive physisorbents which undergo transformations in response to a particular stimulus, such as pressure, heat or light. Herein, we report two isostructural light modulated adsorbents (LMAs) containing bis-3-thienylcyclopentene (BTCP), LMA-1 [Cd(BTCP)(DPT)2 ] (DPT=2,5-diphenylbenzene-1,4-dicarboxylate) and LMA-2 [Cd(BTCP)(FDPT)2 ] (FDPT=5-fluoro-2,diphenylbenzene-1,4-dicarboxylate). Both LMAs undergo pressure induced switching transformations from non-porous to porous via adsorption of N2 , CO2 and C2 H2 . LMA-1 exhibited multi-step adsorption while LMA-2 showed a single-step adsorption isotherm. The light responsive nature of the BTPC ligand in both frameworks was exploited with irradiation of LMA-1 resulting in a 55 % maximum reduction of CO2 uptake at 298 K. This study reports the first example of a switching sorbent (closed to open) that can be further modulated by light.

17.
Nat Chem ; 15(4): 542-549, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36781909

RESUMEN

Flexible metal-organic materials that exhibit stimulus-responsive switching between closed (non-porous) and open (porous) structures induced by gas molecules are of potential utility in gas storage and separation. Such behaviour is currently limited to a few dozen physisorbents that typically switch through a breathing mechanism requiring structural contortions. Here we show a clathrate (non-porous) coordination network that undergoes gas-induced switching between multiple non-porous phases through transient porosity, which involves the diffusion of guests between discrete voids through intra-network distortions. This material is synthesized as a clathrate phase with solvent-filled cavities; evacuation affords a single-crystal to single-crystal transformation to a phase with smaller cavities. At 298 K, carbon dioxide, acetylene, ethylene and ethane induce reversible switching between guest-free and gas-loaded clathrate phases. For carbon dioxide and acetylene at cryogenic temperatures, phases showing progressively higher loadings were observed and characterized using in situ X-ray diffraction, and the mechanism of diffusion was computationally elucidated.

18.
Chem Mater ; 35(2): 783-791, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36711053

RESUMEN

Herein, we report the crystal structure and guest binding properties of a new two-dimensional (2D) square lattice (sql) topology coordination network, sql-(azpy)(pdia)-Ni, which is comprised of two linker ligands with diazene (azo) moieties, (E)-1,2-di(pyridin-4-yl)diazene(azpy) and (E)-5-(phenyldiazenyl)isophthallate(pdia). sql-(azpy)(pdia)-Ni underwent guest-induced switching between a closed (nonporous) ß phase and several open (porous) α phases, but unlike the clay-like layer expansion to distinct phases previously reported in switching sql networks, a continuum of phases was formed. In effect, sql-(azpy)(pdia)-Ni exhibited elastic-like properties induced by adaptive guest binding. Single-crystal X-ray diffraction (SCXRD) studies of the α phases revealed that the structural transformations were enabled by the pendant phenyldiazenyl moiety on the pdia2- ligand. This moiety functioned as a type of hinge to enable parallel slippage of layers and interlayer expansion for the following guests: N,N-dimethylformamide, water, dichloromethane, para-xylene, and ethylbenzene. The slippage angle (interplanar distances) ranged from 54.133° (4.442 Å) in the ß phase to 69.497° (5.492 Å) in the ethylbenzene-included phase. Insight into the accompanying phase transformations was also gained from variable temperature powder XRD studies. Dynamic water vapor sorption studies revealed a stepped isotherm with little hysteresis that was reversible for at least 100 cycles. The isotherm step occurred at ca. 50% relative humidity (RH), the optimal RH value for humidity control.

19.
Small ; 19(11): e2206945, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36541750

RESUMEN

A molecular porous material, MPM-2, comprised of cationic [Ni2 (AlF6 )(pzH)8 (H2 O)2 ] and anionic [Ni2 Al2 F11 (pzH)8 (H2 O)2 ] complexes that generate a charge-assisted hydrogen-bonded network with pcu topology is reported. The packing in MPM-2 is sustained by multiple interionic hydrogen bonding interactions that afford ultramicroporous channels between dense layers of anionic units. MPM-2 is found to exhibit excellent stability in water (>1 year). Unlike most hydrogen-bonded organic frameworks which typically show poor stability in organic solvents, MPM-2 exhibited excellent stability with respect to various organic solvents for at least two days. MPM-2 is found to be permanently porous with gas sorption isotherms at 298 K revealing a strong affinity for C2 H2 over CO2 thanks to a high (ΔQst )AC [Qst (C2 H2 ) - Qst (CO2 )] of 13.7 kJ mol-1 at low coverage. Dynamic column breakthrough experiments on MPM-2 demonstrated the separation of C2 H2 from a 1:1 C2 H2 /CO2 mixture at 298 K with effluent CO2 purity of 99.995% and C2 H2 purity of >95% after temperature-programmed desorption. C-H···F interactions between C2 H2 molecules and F atoms of AlF6 3- are found to enable high selectivity toward C2 H2 , as determined by density functional theory simulations.

20.
Cryst Growth Des ; 22(9): 5472-5480, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36120703

RESUMEN

Hybrid ultramicroporous materials (HUMs) are porous coordination networks composed of combinations of organic and inorganic linker ligands with a pore diameter of <7 Å. Despite their benchmark gas sorption selectivity for several industrially relevant gas separations and their inherent modularity, the structural and compositional diversity of HUMs remains underexplored. In this contribution, we report a family of six HUMs (SIFSIX-22-Zn, TIFSIX-6-Zn, SNFSIX-2-Zn, GEFSIX-4-Zn, ZRFSIX-3-Zn, and TAFSEVEN-1-Zn) based on Zn metal centers and the tetratopic N-donor organic ligand tetra(4-pyridyl)benzene (tepb). The incorporation of fluorinated inorganic pillars (SiF6 2-, TiF6 2-, SnF6 2-, GeF6 2-, ZrF6 2-, and TaF7 2-, respectively) resulted in (4,6)-connected fsc topology as verified using single-crystal X-ray diffraction. Pure-component gas sorption studies with N2, CO2, C2H2, C2H4, and C2H6 revealed that the large voids and narrow pore windows common to all six HUMs can be leveraged to afford high C2H2 uptakes while retaining high ideal adsorbed solution theory (IAST) selectivities for industrially relevant gas mixtures: >10 for 1:99 C2H2/C2H4 and >5 for 1:1 C2H2/CO2. The approach taken, systematic variation of pillars with retention of structure, enables differences in selectivity to be attributed directly to the choice of the inorganic pillar. This study introduces fsc topology HUMs as a modular platform that is amenable to fine-tuning of structure and properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...