Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(20): 10634-10647, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38723623

RESUMEN

Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.


Asunto(s)
Hemina , Peróxido de Hidrógeno , Nanotubos de Carbono , Oxidación-Reducción , Peróxido de Hidrógeno/química , Hemina/química , Nanotubos de Carbono/química , Electrodos , Grafito/química , Puntos Cuánticos/química , Nitrógeno/química , Propiedades de Superficie , Técnicas Electroquímicas/métodos , Catálisis
2.
Sci Rep ; 14(1): 9706, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678104

RESUMEN

This article presents a one-step ultrasonication technique for generating biomass carbon dots (BCDs) from neem bark (Azadirachta indica) powder. The BCDs were characterized using modern techniques such as UV-Vis, FTIR, Raman, XRD, HRTEM, FESEM, EDAX, and Zeta potential analyses. Unlike traditional nanocomposite bed systems, this study utilized BCDs as a liquid-phase adsorbent for the regenerative adsorption of the environmentally harmful dye, methylene blue (MB), through an in-situ precipitation reaction. This involved the formation of BCDs-MB adduct via an electrostatic mechanism. The adsorption capacity and percentage of removal were remarkable at 605 mg g-1 and 64.7% respectively, exceeding various solid-based adsorption methods in the literature. The Langmuir isotherm and pseudo-second-order kinetics model provided an excellent fit for this system. The calculated thermodynamic parameter, Gibbs free energy change (ΔG) was negative, indicating a spontaneous, exothermic, and physisorption-based mechanism. The regenerative capacity of our system was further demonstrated by successfully extracting and recovering the MB dye (64%) using ethyl alcohol as the solvent. This method provides an efficient means of recovering valuable cationic organic dye compounds from contaminated environments.

3.
ACS Omega ; 8(48): 45787-45800, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075818

RESUMEN

The development of eco-friendly chemicals and material-based electrode systems with a reduced carbon footprint is a novel initiative for future technological applications. While electrochemical systems based on plant phytochemicals meet the requirements, comprehending the fundamental electron-transfer reactions and preparing stable surface-confined redox systems pose significant research challenges. In this study, we have demonstrated an in situ electrochemical reaction-assisted entrapment of redox-active betanin molecular species from native beetroot plants on a carbon black-modified glassy carbon surface (GCE/CB@Betn-Redox, where Betn-Redox stands for redox-active betanin molecular species) in a pH 2.2 KCl-HCl solution. In general, direct access to native plant phytochemicals is a formidable task due to the matrix effect. Isolating the desired phytochemicals necessitates a series of time-consuming chemical separation steps. Unlike previous literature reports on the unstable nature of Betn, GCE/CB@Betn-Redox exhibited a stable and well-defined proton-coupled electron-transfer peak at an apparent electrode potential, Eo' = 0.4 V vs Ag/AgCl, with a surface-excess value of 17.02 × 10-9 mol cm-2. Using several physicochemical techniques (transmission electron microscopy (TEM), Fourier-transform infrared (FTIR), and Raman), molecular techniques (UPLC), and electrochemical methods (in situ electrochemical quartz crystal microbalance (EQCM) and scanning electrochemical microscopy (SECM)), we have demonstrated the biomimicking electron-transfer functionality of CB@Betn-Redox. The unique feature of CB@Betn-Redox is its nonmediated effect on common biochemicals. This advantage makes it an interesting option for use as a selective pH sensor system without the complications of voltage drift that occur with the mediated oxidation/reduction functionality. We have successfully demonstrated highly selective and stable voltammetric and potentiometric pH sensor applications with practical real samples.

4.
Langmuir ; 39(36): 12563-12575, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37646227

RESUMEN

Pencil graphite (PGE), an ultralow-cost and ready-to-use disposable-type electrode, has been used for various electrochemical and electroanalytical applications after its surface anodization (PGE*, * means preanodized surface). Indeed, systematic studies on mechanistic and surface features of PGE* have not yet been explored. Herein, we report anodized pencil graphite as a model system to study molecular level insights into the surface using a scanning electrochemical microscopy (SECM) technique and dopamine (DA) electrocatalytic oxidation reaction as a molecular probe. The as-prepared PGE* showed an appreciable electronic conductivity similar to the edge-plane graphitic sites (EPPG) of the highly pyrolytic graphitic electrode (HOPG) but without any surface deterioration that occurs with HOPG due to the instability of the EPPG. Physicochemical characterizations by FESEM, FTIR, Raman, and XPS techniques revealed a flake-like exfoliated PGE* surface with higher contents of carbon-oxygen especially phenolic/alcoholic functional groups than the PGE surface. Based on the chronocoulometric experiment, the number of functional groups formed on the PGE* was calculated as 10.9 × 10-10 mol cm-2. An independent SECM technique using ferricyanide as a redox probe showed the existence of a heterogeneous surface and exhibited an improved electron transfer activity due to the flake-like graphitic island on the PGE* surface. Investigated DA electrochemical oxidation on PGE* yielded about three times enhancement in the peak current signal and about 200 mV reduction in the oxidation potential over the PGE without any serious surface fouling feature that is related to the intermediate polydopamine formation on the basal-plane graphitic surface of the underlying electrode. As an independent electroanalytical study, a prototype electrochemical sensor using PGE* as a working electrode for instant detection of DA-containing pharmaceutical samples in a 1 mL Eppendorf vial has been demonstrated.

5.
Langmuir ; 39(33): 11556-11570, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37429831

RESUMEN

The electron-transfer (ET) reaction of cytochrome c (Cytc) protein with biomolecules is a cutting-edge research area of interest in understanding the functionalities of natural systems. Several electrochemical biomimicking studies based on Cytc-protein-modified electrodes prepared via electrostatic interaction and covalent bonding approaches have been reported. Indeed, natural enzymes involve multiple types of bonding, such as hydrogen, ionic, covalent, and π-π, etc. In this work, we explore a Cytc-protein chemically modified glassy carbon electrode (GCE/CB@NQ/Cytc) prepared via π-π bonding using graphitic carbon as an underlying surface and an aromatic organic molecule, naphthoquinone (NQ), as a cofactor for an effective ET reaction. A simple drop-casting technique-based preparation of GCE/CB@NQ showed a distinct surface-confined redox peak at a standard electrode potential (E°) = -0.2 V vs Ag/AgCl (surface excess = 21.3 nmol cm-2) in pH 7 phosphate buffer solution. A control experiment of modification of NQ on an unmodified GCE failed to show any such unique feature. For the preparation of GCE/CB@NQ/Cytc, a dilute solution of Cytc-pH 7 phosphate buffer was drop-cast on the GCE/CB@NQ surface, wherein the protein folding and denaturalization-based complication and its associated ET functionalities were avoided. Molecular dynamics simulation studies show the complexation of NQ with Cytc at the protein binding sites. The protein-bound surface shows an efficient and selective bioelectrocatalytic reduction performance of H2O2, as demonstrated using cyclic voltammetry and amperometric i-t techniques. Finally, the redox-competition scanning electrochemical microscopy (RC-SECM) technique was adopted for in situ visualization of the electroactive adsorbed surface. The RC-SECM images clearly show the regions of highly bioelectrocatalytic active sites of Cytc-proteins bound to NQ molecules on a graphitic carbon surface. The binding of Cytc with NQ has significant implications for studying the biological electron transport mechanism, and the proposed method provides the requisite framework for such a study.


Asunto(s)
Citocromos c , Grafito , Citocromos c/química , Peróxido de Hidrógeno/química , Electrones , Microscopía Electroquímica de Rastreo , Oxidación-Reducción , Carbono/química , Electrodos , Técnicas Electroquímicas
6.
Biosensors (Basel) ; 13(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36979565

RESUMEN

Pencil graphite electrode (PGE) is an alternative, commercially available, ready-to-use, screen-printed electrode for a wide range of electroanalytical applications. Due to the complex-matrix composition and unpredictable electro-inactive nature of PGE in its native form, a surface pre-treatment/activation procedure is highly preferred for using it as an electroactive working electrode for electroanalytical applications. In this article, we review various surface pre-treatment and modification procedures adopted in the literature with respect to the sensitive and selective detection of dopamine as a model system. Specific generation of the carbon-oxygen functional group, along with partial surface exfoliation of PGE, has been referred to as a key step for the activation. Based on the Scopus® index, the literature collection was searched with the keywords "pencil and dopamine". The obtained data were segregated into three main headings as: (i) electrochemically pre-treated PGE; (ii) polymer-modified PGEs; and (iii) metal and metal nanocomposite-modified PGE. This critical review covers various surface activation procedures adopted for the activation for PGE suitable for dopamine electroanalytical application.


Asunto(s)
Grafito , Grafito/química , Dopamina , Carbono/química , Polímeros , Electrodos , Técnicas Electroquímicas/métodos
7.
Biosensors (Basel) ; 12(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35735508

RESUMEN

A simple, one-step and facile method has been introduced to prepare fluorescent and electrochemically active carbon nanoparticles with single-size distribution and good long-term stability by electrochemical exfoliation of polyacrylonitrile-based carbon fibers in an alkaline solution-phase condition. The preparation condition was systematically optimized by studying the effect of temperature and electrolytes. It has been found that an electrochemical exfoliation reaction carried out at an applied potential of 2 V vs. Ag/AgCl in a phosphate-ion-containing alkaline solution at a temperature of 40 °C is an ideal condition for the preparation of 14 ± 4 nm-sized carbon nanoparticles. Unlike the literature protocols, there are no filtration and membrane dialysis-based off-line sample pretreatments adopted in this work. The as-prepared carbon nanoparticles were characterized by fluorescence, Raman spectrum, transmission electron microscope, and X-ray photoelectron spectroscopic characterization methods. It was found that the carbon-oxygen functional group rich in graphene-oxide quantum dots (GOQDs) such as carbon nanoparticles were formed in this work. A preliminary study relating to simultaneous electrochemical oxidation and the sensing of uric acid and ascorbic acid with well-resolved peaks was demonstrated as a model system to extend the new carbon material for electroanalytical applications. Furthermore, in situ synthesis of 2 nm-sized gold nanoparticles stabilized by GOQDs was presented. The carbon nanoparticles prepared by the direct method in this work have shown good stability over 6 months when stored at room temperature. The electrochemical exfoliation reaction has been found to be highly reproducible and suitable for bulk synthesis of luminescence-effective carbon nanoparticles to facilitate fundamental studies and practical applications.


Asunto(s)
Grafito , Nanopartículas del Metal , Carbono/química , Fibra de Carbono , Técnicas Electroquímicas/métodos , Oro/química , Grafito/química , Nanopartículas del Metal/química
8.
Sci Rep ; 11(1): 13905, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230547

RESUMEN

As an alternate for the conventional glass-based pH sensor which is associated with problems like fragile nature, alkaline error, and potential drift, the development of a new redox-sensitive pH probe-modified electrode that could show potential, current-drift and surface-fouling free voltammetric pH sensing is a demanding research interest, recently. Herein, we report a substituted carbazole-quinone (Car-HQ) based new redox-active pH-sensitive probe that contains benzyl and bromo-substituents, immobilized multiwalled carbon nanotube modified glassy carbon (GCE/MWCNT@Car-HQ) and screen-printed three-in-one (SPE/MWCNT@Car-HQ) electrodes for selective, surface-fouling free pH sensor application. This new system showed a well-defined surface-confined redox peak at an apparent standard electrode potential, Eo' = - 0.160 V versus Ag/AgCl with surface-excess value, Γ = 47 n mol cm-2 in pH 7 phosphate buffer solution. When tested with various electroactive chemicals and biochemicals such as cysteine, hydrazine, NADH, uric acid, and ascorbic acid, MWCNT@Car-HQ showed an unaltered redox-peak potential and current values without mediated oxidation/reduction behavior unlike the conventional hydroquinone, anthraquinone and other redox mediators based voltammetry sensors with serious electrocatalytic effects and in turn potential and current drifts. A strong π-π interaction, nitrogen-atom assisted surface orientation and C-C bond formation on the graphitic structure of MWCNT are the plausible reasons for stable and selective voltammetric pH sensing application of MWCNT@Car-HQ system. Using a programed/in-built three-in-one screen printed compatible potentiostat system, voltammetric pH sensing of 3 µL sample of urine, saliva, and orange juice samples with pH values comparable to that of milliliter volume-based pH-glass electrode measurements has been demonstrated.

9.
RSC Adv ; 11(7): 4062-4076, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35424337

RESUMEN

Owing to its electro-inactive character, anisole (phenylmethyl ether, PhOCH3) and its related derivatives have been used as electrolytes in electrochemistry. Herein, we report a simple one-step electro-organic conversion of PhOCH3 to hydroquinone (HQ) on a pristine-MWCNT-Nafion modified electrode glassy carbon electrode surface, GCE/Nf-MWCNT@HQ, in pH 2 KCl-HCl solution within 15 min of working time. The chemically modified electrode showed a highly redox-active and well-defined signal at an apparent standard electrode potential, E o' = 0.45 V vs. Ag/AgCl (A2/C2) with a surface excess value, Γ HQ = 2.1 × 10-9 mol cm-2. The formation of surface-confined HQ is confirmed by collective physicochemical and spectroscopic characterizations using TEM, UV-Vis, Raman, FTIR, NMR and GC-MS techniques and with several control experiments. Consent about the mechanism, the 2.1% of intrinsic iron present in the pristine-MWCNT is involved for specific complexation with oxygen donor organic molecule (PhOCH3) and hydroxylation in presence of H2O2 (nucleophilic attack) for HQ-product formation. The GCE/Nf-MWCNT@HQ showed an excellent heterogeneous-electrocatalytic reduction of Cr(vi) species in acidic solution with a linear calibration plot in a range, 5-500 ppm at an applied potential, 0.4 V vs. Ag/AgCl with a detection limit, 230 ppb (S/N = 3; amperometric i-t). As a proof of concept, selective detection of toxic Cr(vi) content in the tannery-waste water has been demonstrated with a recovery value ∼100%.

10.
ChemSusChem ; 13(21): 5620-5624, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-32946198

RESUMEN

A naturally occurring water-soluble cobalt-complex cyanocobalamin (Vitamin B12) has been identified as a new and efficient electrocatalyst for the CO2 -to-CO reduction reaction in aqueous solution. Heterogeneous B12-electrocatalysts prepared by a simple electrochemical immobilization technique on graphene-oxide (GO)-modified glassy carbon and carbon paper (CP) electrodes, without any non-degradable polymer-binders, showed a highly stable and well-defined surface-confined redox peak at E'=-0.138 V vs. RHE with a surface-excess value, ΓB12 =4.28 nmol cm-2 . This new electrocatalyst exhibits 93 % Faradaic efficiency for CO2 -to-CO conversion at an electrolysis potential, -0.882 V vs. RHE (an optimal condition) with a high current density, 29.4 mA cm-2 and turn-over-frequency value, 5.2 s-1 , without any surface-fouling problem, in 0.5 m KHCO3 . In further, it follows an eco-friendly, sustainable and water-based approach with the involvement of biodegradable and non-toxic chemicals/materials like B12, GO and CP.

11.
ACS Omega ; 5(26): 16208-16219, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32656443

RESUMEN

Owing to its biological significance, preparation of stable surface-confined catechol (CA) is a long-standing interest in electrochemistry and surface chemistry. In this connection, various chemical approaches such as covalent immobilization (using amine- and carboxylate-functionalized CA, diazotization-based coupling, and Michael addition reaction), self-assembled monolayer on gold (thiol-functionalized CA is assembled on the gold surface), CA adsorption on the ad-layer of a defect-free single-crystal Pt surface, π-π bonding, CA pendant metal complexes, and CA-functionalized polymer-modified electrodes have been reported in the literature. In general, these conventional methods are involved with a series of time-consuming synthetic procedures. Indeed, the preparation of a surface-fouling-free surface-confined system is a challenging task. Herein, we introduce a new and facile approach based on electrochemical demethylation of 2-methoxyphenol as a precursor on the graphitic surface (MWCNT) at a bias potential, 0.5 V vs Ag/AgCl in neutral pH solution. Such an electrochemical performance resulted in the development of a stable and well-defined redox peak at E o' = 0.15 (A2/C2) V vs Ag/AgCl within 10 min of preparation time in pH 7 phosphate buffer solution. Calculated surface excess (16.65 × 10-9 mol cm-2) is about 10-1000 times higher than the values reported with other preparation methods. The product (catechol) formed on the modified electrode was confirmed by collective electrochemical and physicochemical characterizations such as potential segment analysis, TEM, Raman, IR, UV-vis, GC-MS, and NMR spectroscopic techniques, and thin-layer chromatographic studies. The electrocatalytic efficiency of the surface-confined CA system was demonstrated by studying hydrazine oxidation and sensing reactions in a neutral pH solution. This new system is found to be tolerant to various interfering biochemicals such as uric acid, xanthine, hypoxanthine, glucose, nitrate, hydrogen peroxide, ascorbic acid, Cu2+, and Fe2+. Since the approach is simple, rapid, and reproducible, a variety of surface-confined CA systems can be prepared.

12.
ACS Omega ; 5(20): 11817-11828, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32478273

RESUMEN

The structure-electroactivity relationship of graphene has been studied using coronene (Cor), polyaromatic hydrocarbon (PAH), and a subunit of graphene as a model system by chemically modified electrode approach. In general, graphene and PAH do not show any redox activity in their native form. Herein, we report a simple electrochemical approach for the conversion of electro-inactive coronene to a highly redox-active molecule (Cor-Redox; E°' = 0.235 ± 0.005 V vs Ag/AgCl) after being adsorbed on graphitic carbon nanomaterial and preconditioned at an applied potential, 1.2 V vs Ag/AgCl, wherein, the water molecule oxidizes to dioxygen via hydroxyl radical (•OH) intermediate, in acidic solution (pH 2 KCl-HCl). When the same coronene electrochemical experiment was carried out on an unmodified glassy carbon electrode, there was no sign of faradic signal, revealing the unique electrochemical behavior of the coronene molecule on graphitic nanomaterial. The Cor-Redox peak is found to be highly symmetrical (peak-to-peak potential separation of ∼0 V tested by cyclic voltammetry (CV)) and surface-confined (ΓCor-Redox = 10.1 × 10-9 mol cm-2) and has proton-coupled electron-transfer (∂E°'/∂pH = -56 mV pH-1) character. Initially, it was speculated that Cor is converted to a hydroxy group-functionalized Cor molecule (dihydroxy benzene derivative) on the graphitic surface and showed the electrochemical redox activity. However, physicochemical characterization studies including Raman, IR, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), redox-site selective oxidation probe, cysteine (for dihydroxy benzene), radical scavenger ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl, TEMPO), and scanning electrochemical microscopy (SECM) using ferricyanide redox couple have revealed that coronene cationic radical species like electroactive molecule is formed on graphitic material upon the electrochemical oxidation reaction at a high anodic potential. It has been proposed that •OH generated as an intermediate species from the water oxidation reaction is involved in the coronene cationic radical species. Studies on coronene electrochemical reaction at various carbon nanomaterials like multiwalled carbon, single-walled carbon, graphite, graphene oxide, and carbon nanofiber revealed that graphitic structure (without any oxygen functional groups) and its π-π bonding are key factors for the success of the electrochemical reaction. The coronene molecular redox peak showed an unusual electrocatalytic reduction of hydrogen peroxide similar to the peroxidase enzyme-biocatalyzed reduction reaction in physiological solution.

13.
Methods Enzymol ; 630: 249-262, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31931988

RESUMEN

A simple method for molecular wiring of glucose oxidase (GOx) enzyme with a low cost Mn polypyridine complex, Mn(phen)2Cl2, carboxylic acid functionalized multiwalled carbon nanotube (f-MWCNT) and Nafion (Nf), which is useful for glucose oxidation and sensing application in pH 7 phosphate buffer solution, has been demonstrated. In the typical preparation, f-MWCNT, Mn(phen)2Cl2, Nafion and GOx solution/suspension were successfully drop-casted as layer-by-layer on a cleaned glassy carbon electrode and potential cycled using cylic voltametric (CV) technique. In this preparation procedure, the Mn(phen)2Cl2 complex is in-situ converted as a dimer complex, Mn2(phen)2(O)(Cl2). A cooperative interaction based on π-π, covalent, ionic, hydrophilic and hydrophobic are operated in the bioelectrode for molecular wiring and electron-transfer shutting reaction. The modified electrode is designated as GCE/f-MWCNT@Mn2(phen)2(O)(Cl2)-Nf@GOx. CV response of the bioelectrode showed a defined redox peak current signal at an apparent standard electrode potential, E°'=0.55V vs Ag/AgCl. Upon exposure of glucose, the modified electrode showed a current linearity in a range, 0-6mM with a current sensitivity value, 349.4µAmM-1cm-2 by CV and a current linearity in a window, 50-550µM with a current sensitivity, 316.8µAmM-1cm-2 at applied biased potential, 0.65V vs Ag/AgCl by amperometric i-t methods. Obtained glucose oxidation current sensitivity values are relatively higher than Os-complex based transducer systems.


Asunto(s)
Aspergillus niger/enzimología , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Glucosa/química , Manganeso/química , Aspergillus niger/química , Técnicas Biosensibles , Nanotubos de Carbono/química , Oxidación-Reducción , Piridinas/química
14.
Langmuir ; 36(1): 9-19, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31825230

RESUMEN

Turning the π-structure and electronic properties of carbon nanotubes (CNTs) is a cutting-edge research topic in interdisciplinary areas of material chemistry. In general, chemical functionalization of CNT has been adopted for this purpose, which has resulted in a few monolayer thickness increment of CNT diameter size. Herein, we report an interesting observation of >10-fold increment in the apparent diameter of multiwalled carbon nanotubes (MWCNTs) brought about by a process of self-assembly of the BZ moiety on MWCNT, which is formed by electrochemical oxidation of a surface-adsorbed benzene-water cluster, {BZ-nH2O}. From physicochemical characterizations by transmission electron microscopy (TEM) and Raman and IR spectroscopic techniques and electrochemical characterizations by several radical scavenger species, it has been revealed that benzene radical moieties as a series of π-stacked layers ([BZ]-π-stack) were self-assembled on the MWCNT surface. A possible mechanism for their formation was proposed to be electrochemical oxidation of H2O from the MWCNT@{BZ-nH2O}ads layer to oxygen gas via hydroxyl radical formation and benzene cationic radical species at 1.2 V vs Ag/AgCl followed by its self-assembly into a unique MWCNT@[BZ]-π-stack network. The scanning electrochemical microscopic (SECM) technique was used to identify the in situ •OH radical formation. The electrochemical studies of a glassy-carbon-modified MWCNT@[BZ]-π-stack system showed a well-defined and highly symmetrical redox peak at an equilibrium potential E1/2 = 0.2 V vs Ag/AgCl (pH 2 HCl/KCl), with a peak-to-peak potential separation of 0 V, highlighting the ideal-surface-confined electron-transfer nature of the redox couple. Furthermore, enhanced electrical conductivity over the unmodified MWCNT was observed when testing the surface-sensitive redox couple Fe3+/Fe2+ with the modified electrode. This new redox material showed a specific electrocatalytic reduction of hydrogen peroxide at neutral pH (pH 7 phosphate buffer solution) unlike the quinone and other organic redox mediators, which show the reduction signal only in the presence of horseradish peroxidase enzyme.

15.
ACS Omega ; 3(9): 10823-10835, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30320253

RESUMEN

Most of the common redox mediators such as organic dyes and cyanide ligand-associated metal complex systems that have been used for various electrochemical applications are hazardous nature. Sesamol, a vital nutrient that exists in natural products like sesame seeds and oil, shows several therapeutic benefits including anticancer, antidiabetic, cardiovascular protective properties, etc. Herein, we introduce a new electrochemical redox platform based on a sesamol derivative, sesamol-quinone (Ses-Qn; oxidized sesamol), prepared by the in situ electrochemical oxidation method on a carbon nanoblack chemically modified glassy carbon electrode surface (GCE/CB@Ses-Qn) in pH 7 phosphate buffer solution, for nontoxic and sustainable electrochemical, electroanalytical, and bioelectroanalytical applications. The new Ses-Qn-modified electrode showed a well-defined redox peak at E o = 0.1 V vs Ag/AgCl without any surface-fouling behavior. Following three representative applications were demonstrated with this new redox system: (i) simple and quick estimation of sesamol content in the natural herbal products by electrochemical oxidation on GCE/CB followed by analyzing the oxidation current signal. (ii) Utilization of the GCE/CB@Ses-Qn as a transducer, bioelectrocatalytic reduction, and sensing of H2O2 after absorbing the horseradish peroxidase (HRP)-based enzymatic system on the underlying surface. The biosensor showed a highly selective H2O2 signal with current sensitivity and detection limit values 0.1303 µA µM-1 and 990 nM, respectively, with tolerable interference from the common biochemicals like dissolved oxygen, cysteine, ascorbic acid, glucose, xanthine, hypoxanthine, uric acid, and hydrazine. (iii) Electrochemical immunosensing of white spot syndrome virus by sequentially modifying primary antibody, antigen, secondary antibody (HRP-linked), and bovine serum albumin on the redox electrode, followed by selective bioelectrochemical detection of H2O2.

16.
ACS Omega ; 3(5): 5435-5444, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023920

RESUMEN

Understanding the relation between the chemical bonding and the electron-transfer (ET) reaction of surface-confined hemin (a five-coordinated Fe-porphyrin-with-chlorine complex) is a special interest in the biomimicking studies of heme proteins. Owing to the difficulty in ET function, scanty electrochemical reports of hemin in aqueous solution were reported. It has been noticed that in most of the reported procedures, the sixth axial coordination position of the hemin complex has been unknowingly turned by attaching with water molecules (potential cycling in alkaline conditions or heating), solvents such as ethanol and dimethyl sulfoxide, and nitrogen-donating compounds that have helped for the heme ET reaction. In this work, a systematic effort has been taken to find out the contribution of hemin and its axial bond coordination with π-π interaction, hydrogen bonding, and hydrophobic binding systems toward the ET reaction. Various graphitic carbons such as graphitized mesoporous carbon (GMC), mesoporous carbon-hydrophilic and hydrophobic units, graphite nanopowder, graphene oxide, single-walled carbon, multiwalled carbon nanotube (MWCNT), and carboxylic acid-functionalized MWCNT (as a source for π-π interaction, hydrogen bonding, and hydrophobic environment) along with the amino functional group of chitosan (Chit; as an axial site coordinating system) have been tested by modifying them as a hemin hybrid on a glassy carbon electrode (GCE). In addition, a gold nanoparticle (Aunano) system was combined with the above matrix as a molecular wiring agent, and its role was examined. A highly stable and well-defined redox peak at an apparent formal potential (Eo') of -320 mV versus Ag/AgCl with the highest surface excess of 120 × 10-10 mol cm-2 was noticed with the GCE/Aunano-GMC@hemin-Chit hybrid system, wherein all interactive features have been utilized. Omitting any of the individual interactions resulted in either decreased (with Aunano) or nil current response. As applications, efficient bio-electrocatalytic reduction and sensing of dissolved oxygen and hydrogen peroxide have been demonstrated.

17.
Analyst ; 143(13): 3114-3123, 2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-29868662

RESUMEN

The sulfide ion and its associated species (H2S and HS-) are widely referred to as toxic chemicals. However, at concentrations of ∼10-100 µM, it serves as a neurotransmitter and signaling agent in biological systems. Abnormalities in blood serum sulfide can be an indication of several diseases, including diabetes, wherein there is a significant reduction in the sulfide ion concentration (<10 µM). Herein, we wish report a 9,10-phenanthrenequinone (PQn) tethered graphene oxide (GO) modified glassy carbon electrode (GCE/GO@PQn) for the highly selective and stable electrocatalytic oxidation and flow injection analysis (FIA) of sulfide ions. The electrode exhibits a detection range of 1-100 µM, and is suitable for the common biochemical interference-free detection of blood serum sulfide in pH 7 phosphate buffer solution. The modified electrode was found to be tolerant of interfering chemicals such as cysteine, uric acid, ascorbic acid, nitrate, glucose, hydrogen peroxide, nitrate, nitrite and dissolved oxygen. This is unlike conventional redox mediator modified electrodes, which all show marked interference with the above-mentioned chemicals during sulfide detection. A constructed FIA calibration plot (applied potential, Eapp = 0.15 V vs. Ag/AgCl) was linear in the sulfide concentration ranges of 1-100 µM (1st region) and 300 µM-5 mM (2nd region) with a detection limit value of 700 nM. The selective and quick FIA of sulfide ions in three diabetic patient blood samples along with a control was demonstrated as a proof of concept.

18.
Langmuir ; 34(24): 7048-7058, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29792028

RESUMEN

Owing to the versatility and biocompatibility, a self-polymerized DA (in the presence of air at pH 8.5 tris buffer solution) as a polydopamine (pDA) film has been used for a variety of applications. Indeed, instability under electrified condition (serious surface-fouling) and structural ambiguity of the pDA have been found to be unresolved problems. Previously, pDA films (has hygroscopic and insoluble property) prepared by various controlled chemical oxidation methods have been examined for the structural analysis using ex situ solid-state NMR and mass spectroscopic techniques. In this work, a new in situ approach has been introduced using an electrochemical quartz crystal microbalance (EQCM) technique for the improved structural elucidation of pDA that has been formed by a controlled electrochemical oxidation of DA on a carboxylic acid functionalized multiwalled carbon nanotube-Nafion (cationic perfluoro polymer) modified electrode (f-MWCNT-Nf) system in pH 7 phosphate buffer solution. Key intermediates like 5,6-dihydroxy indole (DHI; 150.7 g mol-1), dopamine (154.1 g mol-1), Na+, PO42-, and polymeric product of high molecular weight, 2475 g mol-1, have been trapped on f-MWCNT-Nf surface via π-π (sp2 carbon of MWCNT and aromatic e-s), covalent (amide-II bonding, minimal), hydrogen, and ionic bonding and identified its molecular weights successfully. The new pDA film system showed well-defined peaks at E°' = 0.25 V and -0.350 vs Ag/AgCl corresponding to the surface-confined dopamine/dopamine quinone and DHI/5,6-indolequinone redox transitions without any surface-fouling complication. As an electroanalytical application of pDA, selective recognition of Pb2+ ion via {(pDA)-hydroquinone-Pb0} complexation with detection limit (signal-to-noise ratio = 3) 840 part-per-trillion has been demonstrated.


Asunto(s)
Dopamina/química , Técnicas Electroquímicas , Indoles/síntesis química , Iones/química , Plomo/química , Polímeros/síntesis química , Electrodos , Nanotubos de Carbono , Oxidación-Reducción , Polímeros/química
19.
Analyst ; 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29546255

RESUMEN

Direct sensing of uric acid (UA) in an undiluted whole blood sample is reported here taking human whole blood as an analyte and a self-supporting electrolyte. Among various solid electrodes (Pt, Au, GCE, and GCE/Nafion) and carbon nanomaterials (carbon nanofibers, graphene oxide, graphite nanopowder, graphitized mesoporous carbon (GMC), single-walled carbon nanotubes, and multiwalled carbon nanotubes) tested, a GMC-modified glassy carbon electrode, designated as GCE/GMC, showed a remarkable response towards direct electrochemical oxidation of blood uric acid at ∼0.25 V vs. Ag/AgCl, unlike the poor and/or feeble current signals with the other unmodified and modified electrodes. It is plausible that the mesoporous nature of the GMC favours the formation of a blood-GMC bio-corona through internalization and provides straight access to blood-matrixed uric acid. Furthermore, the effects of the scan rate and interference with various biochemicals on the GCE/GMC were analysed. The electrochemical oxidation reaction is found to be diffusion controlled in nature and there is no interference from common biochemicals like ascorbic acid, glucose, tryptophan, H2O2, xanthine, hypoxanthine, cysteine, nitrate, nitrite, and sulfide in blood. Real blood UA sample analysis was demonstrated with comparable UA analysis results from the clinical measurement.

20.
ACS Appl Bio Mater ; 1(5): 1758-1767, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34996224

RESUMEN

The search for a new and efficient transducer that can electrically connect enzyme active sites, like flavin adenine dinucleotide in glucose oxidase (GOx), with the electrode surface is a cutting-edge research area. Currently, Os(bpy)-complex pendent polyvinylpyridine/polyvinyl imidazole/pyridinium hydrogel based chemically modified electrodes have been widely used for this purpose (bpy = 2,2'-bipyridine). Herein, we report, a [Mn2III(phen)4(O)(Cl)2]2+ complex/Nafion-immobilized carboxylic acid-functionalized multiwalled carbon nanotube modified glassy carbon electrode (GCE/f-MWCNT@Mn2(Phen)4O(Cl)2-Nf, phen = 1,10-phenanthroline), prepared by an in-situ electrochemical method using the precursor, Mn(phen)2Cl2, as an efficient and low cost alternate to the Os-complex transducer, for the glucose oxidase enzyme (GOx) based bio-electro-catalytic system. The existence of the key active site, [Mn2III(phen)4(O)(Cl)2]2+, on the modified electrode was confirmed by physicochemical characterizations using transmission electron microscope, Raman, infrared, and UV-vis spectroscopes and electrospray ionization mass spectrometry techniques. The Mn-complex modified electrode showed a redox peak at E°' = 0.55 V vs Ag/AgCl in neutral solution with a surface excess (ΓMn) value of 5.6 × 10-9 mol cm-2. The GOx enzyme bioanode prepared by adsorbing GOx on the Mn-complex modified electrode has shown an efficient bioelectrocatalytic oxidation of glucose with a Tafel slope value of 111 mV dec-1. Amperometric i-t analysis of glucose showed a calibration plot in a linear range of 50-550 µM and with current sensitivity of 316.7 µA mM-1 cm-2. The current sensitivity value obtained here is about 2-80 000 times higher than that of the Os(bpy)-complex based transducers used for GOx based bio-electro-catalytic applications. Utilizing this new bioanode system along with a Pt-based oxygen reduction electrode, a new biofuel cell was constructed and achieved a power density value 7.5 µW cm-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...