Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 49(49): 10486-95, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21062008

RESUMEN

Human ß-defensin 2 (HBD2) is a member of the defensin family of antimicrobial peptides that plays important roles in the innate and adaptive immune system of both vertebrates and invertebrates. In addition to their direct bactericidal action, defensins are also involved in chemotaxis and Toll-like receptor activation. In analogy to chemokine/glycosaminoglycan (GAG) interactions, GAG-defensin complexes are likely to play an important role in chemotaxis and in presenting defensins to their receptors. Using a gel mobility shift assay, we found that HBD2 bound to a range of GAGs including heparin/heparan sulfate (HS), dermatan sulfate (DS), and chondroitin sulfate. We used NMR spectroscopy of (15)N-labeled HBD2 to map the binding sites for two GAG model compounds, a heparin/HS pentasaccharide (fondaparinux sodium; FX) and enzymatically prepared DS hexasaccharide (DSdp6). We identified a number of basic amino acids that form a common ligand binding site, which indicated that these interactions are predominantly electrostatic. The dissociation constant of the [DSdp6-HBD2] complex was determined by NMR spectroscopy to be 5 ± 5 µM. Binding of FX could not be quantified because of slow exchange on the NMR chemical shift time scale. FX was found to induce HBD2 dimerization as evidenced by the analysis of diffusion coefficients, (15)N relaxation, and nESI-MS measurements. The formation of FX-bridged HBD2 dimers exhibited features of a cooperative binding mechanism. In contrast, the complex with DSdp6 was found to be mostly monomeric.


Asunto(s)
Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , beta-Defensinas/química , beta-Defensinas/metabolismo , Sitios de Unión/fisiología , Quimiotaxis de Leucocito/fisiología , Humanos , Espectroscopía de Resonancia Magnética , Oligosacáridos/química , Oligosacáridos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Electricidad Estática , Sulfatos/química , Sulfatos/metabolismo
2.
Antimicrob Agents Chemother ; 54(5): 1922-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20176896

RESUMEN

Beta-defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1C(V) has bactericidal activity similar to that of its parent peptide (murine beta-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1C(V) is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this beta-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide.


Asunto(s)
Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Fragmentos de Péptidos/química , beta-Defensinas/química , Animales , Antibacterianos/farmacología , Dimerización , Diseño de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Fragmentos de Péptidos/farmacología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , beta-Defensinas/farmacología
3.
J Phys Chem B ; 114(6): 2312-8, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20102218

RESUMEN

In recent times there has been an enormous rise in resistance to synthetic antibiotics as well as an increase in the virulence of bacteria, the so-called "superbugs". This problem has catalyzed a search for novel molecules to fight bacteria, which in turn relies on a better understanding of the molecular basis of the immune response. Beta-defensins are a class of small, cationic, cysteine-rich antimicrobial peptides expressed by humans and other animals to act against incoming pathogens. As well as their antimicrobial properties, beta-defensins also act as chemokines, recruiting cells to the sites of infection. Here the relationship between the tertiary structures of beta-defensin analogs and their chemotactic activities has been investigated using ion mobility-mass spectrometry (IM-MS) and biochemical assays. A panel of derivatives of the murine beta-defensin Defb14 has been formed and the ability of these peptides to chemoattract the receptor CCR6 has been assessed in vitro. The derivatives can be divided into two groups, those with chemotactic activity equal to that of the unmodified parent peptide, and those whose chemotactic activity has been lost upon modification. Analysis by ion mobility-mass spectrometry reveals the conformational preferences of these peptides upon ionization from different solvents. Under denaturing conditions, the chemotactic peptides adopt more compact conformations in the gas-phase at higher charge states than those which are inactive. While the conditions of these experiments are not akin to the environment around the receptor in vivo, this technique provides an in vacuo method for distinguishing between the different chemotactic activities of beta-defensin derivatives.


Asunto(s)
Iones/química , beta-Defensinas/química , Línea Celular , Humanos , Espectrometría de Masas , Conformación Proteica , Desnaturalización Proteica , Receptores CCR6/metabolismo
4.
Protein Pept Lett ; 16(6): 668-76, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19519528

RESUMEN

Human beta-defensin 2 (HBD2) has been shown to interact with pathogenic bacteria and components of the mammalian innate and adaptive immune response. We describe a quick and reliable method for the production of HBD2 in Escherichia coli. HBD2 was expressed as an insoluble fusion, chemically cleaved and oxidised to give a single, folded HBD2 beta-isoform. The purified peptide was analysed by high resolution mass spectrometry, displayed a well-dispersed (1)H NMR spectrum, was a chemoattractant to HEK293 cells expressing CCR6 and acted as an antimicrobial agent against E. coli, P. aeruginosa, C. albicans and S. aureus.


Asunto(s)
Antiinfecciosos/metabolismo , Escherichia coli/genética , beta-Defensinas/metabolismo , Secuencia de Aminoácidos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Secuencia de Bases , Línea Celular , Quimiotaxis/efectos de los fármacos , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Receptores CCR6/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , beta-Defensinas/química , beta-Defensinas/genética , beta-Defensinas/farmacología
5.
Protein Expr Purif ; 65(2): 179-84, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19063971

RESUMEN

beta-Defensins are a family of cationic peptides that contain six invariant cysteine residues that form characteristic disulfide bonds between Cys(1)-Cys(5), Cys(2)-Cys(4) and Cys(3)-Cys(6). They have been shown to act as potent antimicrobial agents and chemokines. Human beta-defensin 2 (HBD2) was first isolated from psoriatic skin lesions and the structure of this peptide has been solved by X-ray crystallography and NMR spectroscopy both of which are consistent with a fold that contains an N-terminal alpha-helix and three antiparallel beta-strands. Here, we report the expression and purification of the first isotopically labelled beta-defensin ((15)N HBD2) with 100% incorporation of (15)N using a recombinant Escherichia coli method. Multidimensional NMR spectroscopy experiments: 2D (1)H-(15)N HSQC, 3D HSQC-TOCSY and 3D HSQC-NOESY allows for the assignment of resonances with no overlapping or ambiguous peaks. This isotopically labelled peptide is highly suitable for studying the interactions between HBD2 and a range of components from both the mammalian immune system and bacterial pathogens.


Asunto(s)
Proteínas Recombinantes de Fusión/química , beta-Defensinas/química , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Isótopos de Nitrógeno , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Estándares de Referencia , beta-Defensinas/biosíntesis , beta-Defensinas/aislamiento & purificación
6.
J Biol Chem ; 283(11): 6631-9, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18180295

RESUMEN

beta-Defensins are important in mammalian immunity displaying both antimicrobial and chemoattractant activities. Three canonical disulfide intramolecular bonds are believed to be dispensable for antimicrobial activity but essential for chemoattractant ability. However, here we show that HBD3 (human beta-defensin 3) alkylated with iodoactemide and devoid of any disulfide bonds is still a potent chemoattractant. Furthermore, when the canonical six cysteine residues are replaced with alanine, the peptide is no longer active as a chemoattractant. These findings are replicated by the murine ortholog Defb14. We restore the chemoattractant activity of Defb14 and HBD3 by introduction of a single cysteine in the fifth position (Cys V) of the beta-defensin six cysteine motif. In contrast, a peptide with a single cysteine at the first position (Cys I) is inactive. Moreover, a range of overlapping linear fragments of Defb14 do not act as chemoattractants, suggesting that the chemotactic activity of this peptide is not dependent solely on an epitope surrounding Cys V. Full-length peptides either with alkylated cysteine residues or with cysteine residues replaced with alanine are still strongly antimicrobial. Defb14 peptide fragments were also tested for antimicrobial activity, and peptides derived from the N-terminal region display potent antimicrobial activity. Thus, the chemoattractant and antimicrobial activities of beta-defensins can be separated, and both of these functions are independent of intramolecular disulfide bonds. These findings are important for further understanding of the mechanism of action of defensins and for therapeutic design.


Asunto(s)
Antiinfecciosos/farmacología , Bioquímica/métodos , Factores Quimiotácticos/química , beta-Defensinas/química , beta-Defensinas/metabolismo , Secuencia de Aminoácidos , Animales , Cisteína/química , Disulfuros/química , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Datos de Secuencia Molecular , Distribución Tisular
7.
Biopolymers ; 88(5): 774-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17554752

RESUMEN

Four-, five-, and six-helix bundle template assembled synthetic proteins (TASPs) have been synthesized using disulfide bonds between cavitand templates and peptides, and characterized in terms of stability and structural specificity. The peptide sequence (CGGGEELLKKLEE LLKKG) used was originally designed for a four-helix bundle. The TASPs were analyzed using CD spectroscopy, chemical denaturation studies, NMR spectroscopy, sedimentation equilibria studies, and hydrophobic dye binding studies to determine the effect of a single peptide sequence when incorporated into bundles with different numbers of helices. If the design was indeed idealized for a four-helix bundle, then the five- and six-helix bundles should be less stable and manifest lower conformational specificity. The TASPs all demonstrated high stability and cooperative unfolding. However, the four-helix bundle was found to be significantly more stable and nativelike compared to the five- and six-helix bundles. This suggests that the peptide sequence is specific to the four-helix bundle, as designed. This result demonstrates the ability to design de novo proteins with specified structure, not just generic stability.


Asunto(s)
Péptidos/química , Proteínas/síntesis química , Secuencia de Aminoácidos , Dicroismo Circular , Medición de Intercambio de Deuterio , Éteres Cíclicos/química , Guanidina/farmacología , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Peso Molecular , Unión Proteica , Desnaturalización Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Resorcinoles/química , Espectrometría de Fluorescencia , Temperatura
8.
Chemistry ; 13(13): 3596-605, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17295367

RESUMEN

We have designed, synthesised and characterised a series of template-assembled de novo four-helix bundles, each differing in the linker length between the template and the peptides. The helix is based on an earlier peptide sequence: EELLKKLEELLKKLG (first-generation sequence), which was designed to link the hydrophilic/hydrophobic interface of the helices. Increasing or decreasing the linker length by one glycine residue had a significant effect on the structure and properties of the template-assembled synthetic proteins (TASPs). Here, the effect of the linker length is further probed by linking the peptides closer to the hydrophobic face by using the second-generation sequence, AEELLKKLEELLKKG, in an effort to improve the packing between the helices and to better understand the helical bundles. The peptides were synthesised with 0-4 Gly linker residues and linked onto a cavitand template. The proteins were found to be alpha-helical, stable to guanidine hydrochloride (GuHCl) and to unfold cooperatively. However, their stabilities toward GuHCl, propensity to self-aggregate and structural specificity differed. The two-glycine variant of the second-generation series demonstrated the highest stability and most native-like character of all the mononeric TASPs in both the first- and second-generation series. The structural specificity of this two glycine variant is comparable to that of other known native-like de novo proteins. Molecular dynamics simulations showed that the two-glycine variant contains helices that are tilted with respect to the cavitand template and may account for its unique properties.


Asunto(s)
Éteres Cíclicos , Modelos Biológicos , Proteínas/síntesis química , Resorcinoles , Secuencia de Aminoácidos , Dicroismo Circular , Simulación por Computador , Éteres Cíclicos/química , Guanidina/química , Guanidina/farmacología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas/química , Resorcinoles/química , Relación Estructura-Actividad
9.
Proteins ; 64(3): 719-29, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16783791

RESUMEN

We have investigated the structure and dynamics of three cavitand-based four-helix bundles (caviteins) by computer simulation. In these systems, designed de novo, each of the four helices contain the identical basis sequence EELLKKLEELLKKG (N1). Each cavitein consists of a rigid macrocycle (cavitand) with four aryl linkages, to each of which is connected an N1 peptide by means of a linker peptide. The three caviteins studied here differ only in the linker peptide, which consist of one, two, or three glycine residues. Previous experimental work has shown that these systems exhibit very different behavior in terms of stability and oligomerization states despite the small differences in the linker peptide. Given that to date no three-dimensional structure is available for these caviteins, we have undertaken a series of molecular dynamics (MD) simulations in explicit water to try to rationalize the large differences in the experimentally observed behavior of these systems. Our results provide insight, for the first time, into why and how the cavitein with a single glycine linker forms dimers. In addition, our results indicate why although the two- and three-glycine-linked caviteins have similar stabilities, they have different native-like characteristics: the cavitein with three glycines can form a supercoiled helix, whereas the one with two glycines cannot. These findings may provide a useful guide in the rational de novo design of novel proteins with finely tunable structures and functions in the future.


Asunto(s)
Simulación por Computador , Péptidos/química , Secuencia de Aminoácidos , Aminoácidos/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Secundaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA