Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(1): 259-268, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38091519

RESUMEN

Short-chain esters are versatile chemicals that can be used as flavors, fragrances, solvents, and fuels. The de novo ester biosynthesis consists of diverging and converging pathway submodules, which is challenging to engineer to achieve optimal metabolic fluxes and selective product synthesis. Compartmentalizing the pathway submodules into specialist cells that facilitate pathway modularization and labor division is a promising solution. Here, we engineered a synthetic Escherichia coli coculture with the compartmentalized sugar utilization and ester biosynthesis pathways to produce isobutyl butyrate from a mixture of glucose and xylose. To compartmentalize the sugar-utilizing pathway submodules, we engineered a xylose-utilizing E. coli specialist that selectively consumes xylose over glucose and bypasses carbon catabolite repression (CCR) while leveraging the native CCR machinery to activate a glucose-utilizing E. coli specialist. We found that the compartmentalization of sugar catabolism enabled simultaneous co-utilization of glucose and xylose by a coculture of the two E. coli specialists, improving the stability of the coculture population. Next, we modularized the isobutyl butyrate pathway into the isobutanol, butyl-CoA, and ester condensation submodules, where we distributed the isobutanol submodule to the glucose-utilizing specialist and the other submodules to the xylose-utilizing specialist. Upon compartmentalization of the isobutyl butyrate pathway submodules into these sugar-utilizing specialist cells, a robust synthetic coculture was engineered to selectively produce isobutyl butyrate, reduce the biosynthesis of unwanted ester byproducts, and improve the production titer as compared to the monoculture.


Asunto(s)
Butanoles , Escherichia coli , Azúcares , Escherichia coli/genética , Escherichia coli/metabolismo , Azúcares/metabolismo , Xilosa/metabolismo , Butiratos/metabolismo , Técnicas de Cocultivo , Ingeniería Metabólica , Glucosa/metabolismo , Ésteres/metabolismo
2.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37960630

RESUMEN

Drones, also known as unmanned aerial vehicles (UAVs) and sometimes referred to as 'Mobile IoT' or 'Flying IoT', are widely adopted worldwide, with their market share continuously increasing. While drones are generally harnessed for a wide range of positive applications, recent instances of drones being employed as lethal weapons in conflicts between countries like Russia, Ukraine, Israel, Palestine, and Hamas have demonstrated the potential consequences of their misuse. Such misuse poses a significant threat to cybersecurity and human lives, thereby highlighting the need for research to swiftly and accurately analyze drone-related crimes, identify the responsible pilot, and establish when and what illegal actions were carried out. In contrast to existing research, involving limited data collection and analysis of the drone, our study focused on collecting and rigorously analyzing data without restrictions from the remote controller used to operate the drone. This comprehensive approach allowed us to unveil essential details, including the pilot's account information, the specific drone used, pairing timestamps, the pilot's operational location, the drone's flight path, and the content captured during flights. We developed methodologies and proposed artifacts to reveal these specifics, which were supported by real-world data. Significantly, this study is the pioneering digital forensic investigation of remote controller devices. We meticulously collected and analyzed all internal data, and we even employed reverse engineering to decrypt critical information files. These achievements hold substantial significance. The outcomes of this research are expected to serve as a digital forensic methodology for drone systems, thereby making valuable contributions to numerous investigations.

3.
Bioresour Technol ; 384: 129263, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37271458

RESUMEN

Consolidated bioprocessing (CBP) of lignocellulosic biomass uses cellulolytic microorganisms to enable enzyme production, saccharification, and fermentation to produce biofuels, biochemicals, and biomaterials in a single step. However, understanding and redirecting metabolisms of these microorganisms compatible with CBP are limited. Here, a cellulolytic thermophile Clostridium thermocellum was engineered and demonstrated to be compatible with CBP integrated with a Co-solvent Enhanced Lignocellulosic Fractionation (CELF) pretreatment for conversion of hardwood poplar into short-chain esters with industrial use as solvents, flavors, fragrances, and biofuels. The recombinant C. thermocellum engineered with deletion of carbohydrate esterases and stable overexpression of alcohol acetyltransferases improved ester production without compromised deacetylation activities. These esterases were discovered to exhibit promiscuous thioesterase activities and their deletion enhanced ester production by rerouting the electron and carbon metabolism. Ester production was further improved up to 80-fold and ester composition could be modulated by deleting lactate biosynthesis and using poplar with different pretreatment severity.


Asunto(s)
Clostridium thermocellum , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Biomasa , Biocombustibles , Lignina/química , Fermentación , Solventes/metabolismo
4.
Metab Eng ; 73: 38-49, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561848

RESUMEN

The one-carbon recursive ketoacid elongation pathway is responsible for making various branched-chain amino acids, aldehydes, alcohols, ketoacids, and acetate esters in living cells. Controlling selective microbial biosynthesis of these target molecules at high efficiency is challenging due to enzyme promiscuity, regulation, and metabolic burden. In this study, we present a systematic modular design approach to control proteome reallocation for selective microbial biosynthesis of branched-chain acetate esters. Through pathway modularization, we partitioned the branched-chain ester pathways into four submodules including ketoisovalerate submodule for converting pyruvate to ketoisovalerate, ketoacid elongation submodule for producing longer carbon-chain ketoacids, ketoacid decarboxylase submodule for converting ketoacids to alcohols, and alcohol acyltransferase submodule for producing branched-chain acetate esters by condensing alcohols and acetyl-CoA. By systematic manipulation of pathway gene replication and transcription, enzyme specificity of the first committed steps of these submodules, and downstream competing pathways, we demonstrated selective microbial production of isoamyl acetate over isobutyl acetate. We found that the optimized isoamyl acetate pathway globally redistributed the amino acid fractions in the proteomes and required up to 23-31% proteome reallocation at the expense of other cellular resources, such as those required to generate precursor metabolites and energy for growth and amino acid biosynthesis. From glucose fed-batch fermentation, the engineered strains produced isoamyl acetate up to a titer of 8.8 g/L (>0.25 g/L toxicity limit), a yield of 0.22 g/g (61% of maximal theoretical value), and 86% selectivity, achieving the highest titers, yields and selectivity of isoamyl acetate reported to date.


Asunto(s)
Ésteres , Proteoma , Acetatos/metabolismo , Alcoholes/metabolismo , Aminoácidos/genética , Carbono , Ésteres/metabolismo , Cetoácidos/metabolismo , Proteoma/genética
5.
Biotechnol Bioeng ; 118(12): 4655-4667, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34436763

RESUMEN

Alcohol acyltransferases (AATs) enables microbial biosynthesis of a large space of esters by condensing an alcohol and an acyl-CoA. However, substrate promiscuity of AATs prevents microbial biosynthesis of designer esters with high selectivity. Here, we developed a high-throughput microbial screening platform that facilitates rapid identification of AATs for designer ester biosynthesis. First, we established a microplate-based culturing technique with in situ fermentation and extraction of esters. We validated its capability in rapid profiling of the alcohol substrate specificity of 20 chloramphenicol acetyltransferase variants derived from Staphylococcus aureus (CATSa ) for microbial biosynthesis of acetate esters with various exogeneous alcohol supply. By coupling the microplate-based culturing technique with a previously established colorimetric assay, we developed a high-throughput microbial screening platform for AATs. We demonstrated that this platform could not only probe the alcohol substrate specificity of both native and engineered AATs but also identify the beneficial mutations in engineered AATs for enhanced ester synthesis. We anticipate the high-throughput microbial screening platform provides a useful tool to identify novel wildtype and engineered AATs that have important roles in nature and industrial biocatalysis for designer bioester production.


Asunto(s)
Aciltransferasas , Ensayos Analíticos de Alto Rendimiento/métodos , Ingeniería de Proteínas/métodos , Proteínas , Proteínas Recombinantes , Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Colorimetría , Escherichia coli/genética , Ésteres/metabolismo , Fermentación , Simulación del Acoplamiento Molecular , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Biotechnol Biofuels ; 14(1): 116, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971924

RESUMEN

BACKGROUND: Mass spectrometry-based proteomics can identify and quantify thousands of proteins from individual microbial species, but a significant percentage of these proteins are unannotated and hence classified as proteins of unknown function (PUFs). Due to the difficulty in extracting meaningful metabolic information, PUFs are often overlooked or discarded during data analysis, even though they might be critically important in functional activities, in particular for metabolic engineering research. RESULTS: We optimized and employed a pipeline integrating various "guilt-by-association" (GBA) metrics, including differential expression and co-expression analyses of high-throughput mass spectrometry proteome data and phylogenetic coevolution analysis, and sequence homology-based approaches to determine putative functions for PUFs in Clostridium thermocellum. Our various analyses provided putative functional information for over 95% of the PUFs detected by mass spectrometry in a wild-type and/or an engineered strain of C. thermocellum. In particular, we validated a predicted acyltransferase PUF (WP_003519433.1) with functional activity towards 2-phenylethyl alcohol, consistent with our GBA and sequence homology-based predictions. CONCLUSIONS: This work demonstrates the value of leveraging sequence homology-based annotations with empirical evidence based on the concept of GBA to broadly predict putative functions for PUFs, opening avenues to further interrogation via targeted experiments.

7.
Metab Eng ; 66: 179-190, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33872779

RESUMEN

Robust and efficient enzymes are essential modules for metabolic engineering and synthetic biology strategies across biological systems to engineer whole-cell biocatalysts. By condensing an acyl-CoA and an alcohol, alcohol acyltransferases (AATs) can serve as interchangeable metabolic modules for microbial biosynthesis of a diverse class of ester molecules with broad applications as flavors, fragrances, solvents, and drop-in biofuels. However, the current lack of robust and efficient AATs significantly limits their compatibility with heterologous precursor pathways and microbial hosts. Through bioprospecting and rational protein engineering, we identified and engineered promiscuity of chloramphenicol acetyltransferases (CATs) from mesophilic prokaryotes to function as robust and efficient AATs compatible with at least 21 alcohol and 8 acyl-CoA substrates for microbial biosynthesis of linear, branched, saturated, unsaturated and/or aromatic esters. By plugging the best engineered CAT (CATec3 Y20F) into the gram-negative mesophilic bacterium Escherichia coli, we demonstrated that the recombinant strain could effectively convert various alcohols into desirable esters, for instance, achieving a titer of 13.9 g/L isoamyl acetate with 95% conversion by fed-batch fermentation. The recombinant E. coli was also capable of simulating the ester profile of roses with high conversion (>97%) and titer (>1 g/L) from fermentable sugars at 37 °C. Likewise, a recombinant gram-positive, cellulolytic, thermophilic bacterium Clostridium thermocellum harboring CATec3 Y20F could produce many of these esters from recalcitrant cellulosic biomass at elevated temperatures (>50 °C) due to the engineered enzyme's remarkable thermostability. Overall, the engineered CATs can serve as a robust and efficient platform for designer ester biosynthesis from renewable and sustainable feedstocks.


Asunto(s)
Escherichia coli , Ésteres , Biocombustibles , Cloranfenicol O-Acetiltransferasa , Escherichia coli/genética , Ingeniería Metabólica
8.
Biotechnol Bioeng ; 117(7): 2223-2236, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32333614

RESUMEN

Medium-chain esters are versatile chemicals with broad applications as flavors, fragrances, solvents, and potential drop-in biofuels. Currently, these esters are largely produced by the conventional chemical process that uses harsh operating conditions and requires high energy input. Alternatively, the microbial conversion route has recently emerged as a promising platform for sustainable and renewable ester production. The ester biosynthesis pathways can utilize either lipases or alcohol acyltransferase (AAT), but the AAT-dependent pathway is more thermodynamically favorable in an aqueous fermentation environment. Even though a cellulolytic thermophile Clostridium thermocellum harboring an AAT-dependent pathway has recently been engineered for direct conversion of lignocellulosic biomass into esters, the production is not efficient. One potential bottleneck is the ester degradation caused by the endogenous carbohydrate esterases (CEs) whose functional roles are poorly understood. The challenge is to identify and disrupt CEs that can alleviate ester degradation while not negatively affecting the efficient and robust capability of C. thermocellum for lignocellulosic biomass deconstruction. In this study, by using bioinformatics, comparative genomics, and enzymatic analysis to screen a library of CEs, we identified and disrupted the two most critical CEs, Clo1313_0613 and Clo1313_0693, that significantly contribute to isobutyl acetate degradation in C. thermocellum. We demonstrated that an engineered esterase-deficient C. thermocellum strain not only reduced ester hydrolysis but also improved isobutyl acetate production while maintaining effective cellulose assimilation.


Asunto(s)
Acetatos/metabolismo , Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Clostridium thermocellum/metabolismo , Esterasas/metabolismo , Proteínas Bacterianas/genética , Celulosa/genética , Clostridium thermocellum/genética , Esterasas/genética , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos
9.
Biotechnol Biofuels ; 12: 245, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636704

RESUMEN

BACKGROUND: Esters are versatile chemicals and potential drop-in biofuels. To develop a sustainable production platform, microbial ester biosynthesis using alcohol acetyltransferases (AATs) has been studied for decades. Volatility of esters endows high-temperature fermentation with advantageous downstream product separation. However, due to the limited thermostability of AATs known, the ester biosynthesis has largely relied on use of mesophilic microbes. Therefore, developing thermostable AATs is important for ester production directly from lignocellulosic biomass by the thermophilic consolidated bioprocessing (CBP) microbes, e.g., Clostridium thermocellum. RESULTS: In this study, we engineered a thermostable chloramphenicol acetyltransferase from Staphylococcus aureus (CATSa) for enhanced isobutyl acetate production at elevated temperatures. We first analyzed the broad alcohol substrate range of CATSa. Then, we targeted a highly conserved region in the binding pocket of CATSa for mutagenesis. The mutagenesis revealed that F97W significantly increased conversion of isobutanol to isobutyl acetate. Using CATSa F97W, we demonstrated direct conversion of cellulose into isobutyl acetate by an engineered C. thermocellum at elevated temperatures. CONCLUSIONS: This study highlights that CAT is a potential thermostable AAT that can be harnessed to develop the thermophilic CBP microbial platform for biosynthesis of designer bioesters directly from lignocellulosic biomass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...