Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(18): eadn7202, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691612

RESUMEN

Stretchable three-dimensional (3D) penetrating microelectrode arrays have potential utility in various fields, including neuroscience, tissue engineering, and wearable bioelectronics. These 3D microelectrode arrays can penetrate and conform to dynamically deforming tissues, thereby facilitating targeted sensing and stimulation of interior regions in a minimally invasive manner. However, fabricating custom stretchable 3D microelectrode arrays presents material integration and patterning challenges. In this study, we present the design, fabrication, and applications of stretchable microneedle electrode arrays (SMNEAs) for sensing local intramuscular electromyography signals ex vivo. We use a unique hybrid fabrication scheme based on laser micromachining, microfabrication, and transfer printing to enable scalable fabrication of individually addressable SMNEA with high device stretchability (60 to 90%). The electrode geometries and recording regions, impedance, array layout, and length distribution are highly customizable. We demonstrate the use of SMNEAs as bioelectronic interfaces in recording intramuscular electromyography from various muscle groups in the buccal mass of Aplysia.


Asunto(s)
Electromiografía , Microelectrodos , Agujas , Electromiografía/métodos , Electromiografía/instrumentación , Animales , Diseño de Equipo , Electrodos , Músculo Esquelético/fisiología , Humanos
2.
Nature ; 626(8000): 746-751, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383624

RESUMEN

For stable and efficient fusion energy production using a tokamak reactor, it is essential to maintain a high-pressure hydrogenic plasma without plasma disruption. Therefore, it is necessary to actively control the tokamak based on the observed plasma state, to manoeuvre high-pressure plasma while avoiding tearing instability, the leading cause of disruptions. This presents an obstacle-avoidance problem for which artificial intelligence based on reinforcement learning has recently shown remarkable performance1-4. However, the obstacle here, the tearing instability, is difficult to forecast and is highly prone to terminating plasma operations, especially in the ITER baseline scenario. Previously, we developed a multimodal dynamic model that estimates the likelihood of future tearing instability based on signals from multiple diagnostics and actuators5. Here we harness this dynamic model as a training environment for reinforcement-learning artificial intelligence, facilitating automated instability prevention. We demonstrate artificial intelligence control to lower the possibility of disruptive tearing instabilities in DIII-D6, the largest magnetic fusion facility in the United States. The controller maintained the tearing likelihood under a given threshold, even under relatively unfavourable conditions of low safety factor and low torque. In particular, it allowed the plasma to actively track the stable path within the time-varying operational space while maintaining H-mode performance, which was challenging with traditional preprogrammed control. This controller paves the path to developing stable high-performance operational scenarios for future use in ITER.

3.
Sci Rep ; 14(1): 202, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191893

RESUMEN

Optimization tasks are essential in modern engineering fields such as chip design, spacecraft trajectory determination, and reactor scenario development. Recently, machine learning applications, including deep reinforcement learning (RL) and genetic algorithms (GA), have emerged in these real-world optimization tasks. We introduce a new machine learning-based optimization scheme that incorporates physics with the operational objectives. This physics-informed neural network (PINN) could find the optimal path in well-defined systems with less exploration and also was capable of obtaining narrow and unstable solutions that have been challenging with bottom-up approaches like RL or GA. Through an objective function that integrates governing laws, constraints, and goals, PINN enables top-down searches for optimal solutions. In this study, we showcase the PINN applications to various optimization tasks, ranging from inverting a pendulum, determining the shortest-time path, to finding the swingby trajectory. Through this, we discuss how PINN can be applied in the tasks with different characteristics.

4.
Biointerphases ; 18(3)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37144874

RESUMEN

This study investigated the corrosion resistance and biocompatibility of magnesium coated with strontium-doped calcium phosphate (Sr-CaP) for dental and orthopedic applications. Sr-CaP was coated on biodegradable magnesium using a chemical dipping method. Magnesium coated with Sr-CaP exhibited better corrosion resistance than pure magnesium. Sr-CaP-coated magnesium showed excellent cell proliferation and differentiation. Additionally, new bone formation was confirmed in vivo. Therefore, Sr-CaP-coated magnesium with reduced degradation and improved biocompatibility can be used for orthopedic and dental implant applications.


Asunto(s)
Magnesio , Osteogénesis , Materiales Biocompatibles Revestidos , Fosfatos de Calcio , Calcio , Estroncio , Corrosión , Aleaciones
5.
ACS Appl Mater Interfaces ; 15(5): 7319-7328, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36701764

RESUMEN

Graphene/polymer actuators were developed using bilayer graphene and various polymer substrates for use as transparent, flexible, and robust electrostatic speaker units. Additionally, a resonant frequency shift was induced using a polymer substrate on which various micropatterns were transferred to boost bass. The total sound pressure level (SPL) in the graphene/polymer actuator was measured by a sweep, and the frequency of the spectrum was confirmed to be one-third that of the octave band frequency. The change in the vibroacoustic characteristic with changes in Young's modulus and density was studied for the polymers of the same size and thickness. Particularly, the possibility of boosting bass was confirmed by inducing a resonant frequency shift and increasing the total SPL by adding micropatterns on a polymer substrate under the same conditions. The resonance frequency of 523 Hz and the SPL of 54 dBA in flat polymer film became 296 Hz and 69 dBA in a specific pattern, which produced a sound of >15 dB based on the same flat polymer. We expect that the design and information provided herein can provide the key parameters required to change the resonant frequency in small-size devices for the application of graphene/polymer thin-film actuators.

6.
Nat Commun ; 13(1): 6477, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309494

RESUMEN

A tokamak, a torus-shaped nuclear fusion device, needs an electric current in the plasma to produce magnetic field in the poloidal direction for confining fusion plasmas. Plasma current is conventionally generated by electromagnetic induction. However, for a steady-state fusion reactor, minimizing the inductive current is essential to extend the tokamak operating duration. Several non-inductive current drive schemes have been developed for steady-state operations such as radio-frequency waves and neutral beams. However, commercial reactors require minimal use of these external sources to maximize the fusion gain, Q, the ratio of the fusion power to the external power. Apart from these external current drives, a self-generated current, so-called bootstrap current, was predicted theoretically and demonstrated experimentally. Here, we reveal another self-generated current that can exist in a tokamak and this has not yet been discussed by present theories. We report conclusive experimental evidence of this self-generated current observed in the KSTAR tokamak.

7.
Nanoscale Adv ; 4(15): 3218-3225, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36132817

RESUMEN

The polymorphism of nanostructures is of paramount importance for many promising applications in high-performance nanodevices. We report the chemical vapor deposition synthesis of Ga2S3 nanowires (NWs) that show the consecutive phase transitions of monoclinic (M) → hexagonal (H) → wurtzite (W) → zinc blende (C) when lowering the growth temperature from 850 to 600 °C. At the highest temperature, single-crystalline NWs were grown in the thermodynamically stable M phase. Two types of H phase exhibited 1.8 nm periodic superlattice structures owing to the distinctively ordered Ga sites. They consisted of three rotational variants of the M phase along the growth direction ([001]M = [0001]H/W) but with different sequences in the variants. The phases shared the same crystallographic axis within the NWs, producing novel core-shell structures to illustrate the phase evolution. The relative stabilities of these phases were predicted using density functional theory calculations, and the results support the successive phase evolution. Photodetector devices based on the p-type M and H phase Ga2S3 NWs showed excellent UV photoresponse performance.

8.
J Adv Prosthodont ; 14(3): 162-172, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35855317

RESUMEN

PURPOSE: The present study aims to analyze the effect of abutment neck taper and types of cement on the amount of undetected remnant cement of cement-retained implant prostheses. MATERIALS AND METHODS: Three neck taper angles (53°, 65°, 77°) and three types of cement (RMGI: resin-modified glass ionomer, ZPC: zinc phosphate cement, ZOE: zinc oxide eugenol cement) were used. For each group, the surface percentage was measured using digital image and graphic editing software. The weight of before and after removing remnant cement from the abutment-crown assembly was measured using an electronic scale. Two-way ANOVA and Duncan & Scheffe's test were used to compare the calculated surface percentage and weight of remnant cement (α = .05). RESULTS: There were significant differences in remnant cement surface percentage and weight according to neck taper angles (P < .05). However, there were no significant differences in remnant cement surface percentage and weight on types of cement. No interaction was found between neck taper angles and types of luting cement (P > .05). The wide abutment with a small neck taper angle showed the most significant amount of remnant cement. And the types of luting cement did not influence the amount of residual cement. CONCLUSION: To remove excess cement better, the emergence profile of the crown should be straight to the neck taper of the abutment in cement-retained implant restoration.

9.
J Prosthet Dent ; 128(2): 206-210, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33608106

RESUMEN

STATEMENT OF PROBLEM: Cigarette smoke can cause discoloration of artificial denture teeth. However, studies on the effects of heated tobacco product smoke on artificial denture teeth are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the effects of conventional cigarette and heated tobacco product smoke on the color stability of artificial denture teeth. MATERIAL AND METHODS: Ninety maxillary central incisor denture teeth (Endura Anterior HC5 A3; Shofu) were randomly divided into 3 groups (n=30). Teeth in the control group were exposed to air; those in group CC were exposed to conventional cigarette (Marlboro Medium; Philip Morris) smoke, and those in group HT were exposed to heated tobacco product (IQOS 2.4 plus holder, Marlboro Heets Silver; Philip Morris) smoke. Before the experiment, the shade of the artificial denture teeth was evaluated in accordance with the Commission International de I'Eclairage (CIELab) color system by using a spectrophotometer (Shadepilot; DeguDent GmbH). The average CIELab value was estimated by scanning the entire labial surface of each specimen. To simulate smoking, standard conditions described by the Coresta Recommended Method N°22 were used-the puff duration was 2 seconds, with a 60-second interval between puffs. For each cigarette, 6 puffs and 6 intervals were simulated across 372 seconds. A total of 105 cigarettes were used based on a smoking simulation of 15 cigarettes each day for 7 days. The teeth in the control group were stored in fresh air in the smoke chamber for the same period as those in the experimental groups. After the experiment, L∗, a∗, and b∗ values were measured, and ΔE was calculated to evaluate the color change. All statistical analyses were performed with a statistical software program using a paired t test to determine discoloration after exposure to cigarette smoke. One-way ANOVA and the Tukey test were used to evaluate the significant differences between groups (α=.05). RESULTS: Lightness was significantly lower in the CC and HT groups (P<.001). All CIELab values showed statistically significant differences in the CC group. The greatest color change was observed in the CC group (ΔE=6.93 ±0.59), whereas the HT group showed a clinically imperceptible color change (ΔE=0.79 ±0.21). Discoloration was minimal in the CC group (ΔE=0.34 ±0.13). CONCLUSIONS: Conventional cigarette and heated tobacco product smoke can change the color of denture teeth. Heated tobacco product smoke causes less discoloration of denture teeth.


Asunto(s)
Productos de Tabaco , Diente Artificial , Dentaduras , Fumar , Nicotiana
10.
ACS Nano ; 14(9): 11995-12005, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32813497

RESUMEN

Two-dimensional ReSe2 has emerged as a promising electrocatalyst for the hydrogen evolution reaction (HER), but its catalytic activity needs to be further improved. Herein, we synthesized Re1-xMoxSe2 alloy nanosheets with the whole range of x (0-100%) using a hydrothermal reaction. The phase evolved in the order of 1T″ (triclinic) → 1T' (monoclinic) → 2H (hexagonal) upon increasing x. In the nanosheets with x = 10%, the substitutional Mo atoms tended to aggregate in the 1T″ ReSe2 phase with Se vacancies. The incorporation of the 1T' phase makes the alloy nanosheets more metallic than the end compositions. The 10% Mo substitution significantly enhanced the electrocatalytic performance toward HER (in 0.5 M H2SO4), with a current of 10 mA cm-2 at an overpotential of 77 mV (vs RHE) and a Tafel slope of 42 mV dec-1. First-principles calculations of the three phases (1T″, 2H, and 1T') predicted a phase transition of 1T″-2H at x ≈ 65% as well as the production of a 1T' phase along the composition tuning, which are consistent with the experiments. At x = 12.5%, two Mo atoms prefer to form a pair along the Re4 chains. Gibbs free energy along the reaction path indicates that the best HER performance of nanosheets with 10% Mo originates from the Mo atoms that form Mo-H when there are adjacent Se vacancies.

11.
Nano Lett ; 20(7): 4939-4946, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543854

RESUMEN

The bottom-up synthesis process often allows the growth of metastable phase nanowires instead of the thermodynamically stable phase. Herein, we synthesized Cd3As2 nanowires with a controlled three-dimensional Dirac semimetal phase using a chemical vapor transport method. Three different phases such as the body centered tetragonal (bct), and two metastable primitive tetragonal (P42/nbc and P42/nmc) phases were identified. The conversion between three phases (bct → P42/nbc → P42/nmc) was achieved by increasing the growth temperature. The growth direction is [110] for bct and P42/nbc and [100] for P42/nmc, corresponding to the same crystallographic axis. Field effect transistors and photodetector devices showed the nearly same electrical and photoelectrical properties for three phases. Differential conductance measurement confirms excellent electron mobility (2 × 104 cm2/(V s) at 10 K). Negative photoconductance was first observed, and the photoresponsivity reached 3 × 104 A/W, which is ascribed to the surface defects acting as trap sites for the photogenerated electrons.

12.
Small ; 16(13): e2000081, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32147958

RESUMEN

2D MoS2 nanostructures have recently attracted considerable attention because of their outstanding electrocatalytic properties. The synthesis of unique Co-Ru-MoS2 hybrid nanosheets with excellent catalytic activity toward overall water splitting in alkaline solution is reported. 1T' phase MoS2 nanosheets are doped homogeneously with Co atoms and decorated with Ru nanoparticles. The catalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is characterized by low overpotentials of 52 and 308 mV at 10 mA cm-2 and Tafel slopes of 55 and 50 mV decade-1 in 1.0 m KOH, respectively. Analysis of X-ray photoelectron and absorption spectra of the catalysts show that the MoS2 well retained its metallic 1T' phase, which guarantees good electrical conductivity during the reaction. The Gibbs free energy calculation for the reaction pathway in alkaline electrolyte confirms that the Ru nanoparticles on the Co-doped MoS2 greatly enhance the HER activity. Water adsorption and dissociation take place favorably on the Ru, and the doped Co further catalyzes HER by making the reaction intermediates more favorable. The high OER performance is attributed to the catalytically active RuO2 nanoparticles that are produced via oxidation of Ru nanoparticles.

13.
ACS Omega ; 4(2): 3098-3104, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31459529

RESUMEN

One-dimensional semiconductor nanowires often contain polytypic structures, owing to the co-existence of different crystal phases. Therefore, understanding the properties of polytypic structures is of paramount importance for many promising applications in high-performance nanodevices. Herein, we synthesized nanowires of typical III-V semiconductors, namely, gallium phosphide and gallium arsenide by using the chemical vapor transport method. The growth directions ([111] and [211]) could be switched by changing the experimental conditions, such as H2 gas flow; thus, various polytypic structures were produced simultaneously in a controlled manner. The nanobeam electron diffraction technique was employed to obtain strain mapping of the nanowires by visualizing the polytypic structures along the [111] direction. Micro-Raman spectra for individual nanowires were collected, confirming the presence of wurtzite phase in the polytypic nanowires. Further, we fabricated the photodetectors using the single nanowires, and the polytypic structures are shown to decrease the photosensitivity. Our systematic analysis provides important insight into the polytypic structures of nanowires.

14.
Nanoscale ; 11(30): 14266-14275, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31317997

RESUMEN

Two-dimensional (2D) MoS2 nanostructures have been extensively investigated in recent years because of their fascinating electrocatalytic properties. Herein, we report 2D hybrid nanostructures consisting of 1T' phase MoS2 and Fe-phthalocyanine (FePc) molecules that exhibit excellent catalytic activity toward both the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). X-ray absorption spectra revealed an increased Fe-N distance (2.04 Å) in the hybrid complex relative to the isolated FePc. Spin-polarized density functional theory calculations predicted that the Fe center moves toward the MoS2 layer and induces a non-planar structure with an increased Fe-N distance of 2.05 Å, which supports the experimental results. The experiments and calculations consistently show a significant charge transfer from FePc to stabilize the hybrid complex. The excellent HER catalytic performance of FePc-MoS2 is characterized by a low Tafel slope of 32 mV dec-1 at a current density of 10 mA cm-2 and an overpotential of 0.123 V. The ORR catalytic activity is superior to that of the commercial Pt/C catalyst in pH 13 electrolyte, with a more positive half-wave potential (0.89 vs. 0.84 V), a smaller Tafel slope (35 vs. 87 mV·dec-1), and a much better durability (9.3% vs. 40% degradation after 20 h). Such remarkable catalytic activity is ascribed to the HER-active 1T' phase MoS2 and the ORR-active nonplanar Fe-N4 site of FePc.

15.
Nanoscale ; 11(9): 3780-3785, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30758362

RESUMEN

Two-dimensional MoS2 meets porphyrin molecules to form unique 1T' phase intercalated complexes via a one-step procedure of hydrothermal reactions. The resultant Mn-porphyrin-MoS2 exhibits excellent electrocatalytic activity toward the hydrogen evolution reaction, with a Tafel slope of 35 mV dec-1 and 10 mA cm-2 at an overpotential of 0.125 V. Spin-polarized density functional theory calculations confirmed that the intercalation of Mn-porphyrin into 1T'-MoS2 is quite favourable due to strong charge transfer from Mn metals. Their outstanding catalytic performance could be ascribed to the high electron concentration as well as the low activation barrier of the Heyrovsky reaction.

16.
J Prosthet Dent ; 121(5): 729-732, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30580979

RESUMEN

The digital scans of dentate arches can be mounted from a virtual interocclusal record to expedite the fabrication of dental prostheses. However, the virtual mounting may develop an occlusal error when combined with less than ideally scanned data and an algorithm that matches poorly. This article describes a method of verifying the accuracy of virtual mounting against the actual occlusal contacts marked with colored articulating paper.


Asunto(s)
Oclusión Dental , Modelos Dentales , Algoritmos , Imagenología Tridimensional , Registro de la Relación Maxilomandibular
17.
ACS Appl Mater Interfaces ; 10(39): 33198-33204, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30188679

RESUMEN

Photocatalytic water splitting is a vital technology for clean renewable energy. Despite enormous progress, the search for earth-abundant photocatalysts with long-term stability and high catalytic activity is still an important issue. We report three possible polymorphs of nickel selenide (orthorhombic phase NiSe2, cubic phase NiSe2, and hexagonal phase NiSe) as bifunctional catalysts for water-splitting photoelectrochemical (PEC) cells. Photocathodes or photoanodes were fabricated by depositing the nickel selenide nanocrystals (NCs) onto p- or n-type Si nanowire arrays. Detailed structural analysis reveals that compared to the other two types, the orthorhombic NiSe2 NCs are more metallic and form less surface oxides. As a result, the orthorhombic NiSe2 NCs significantly enhanced the performance of water-splitting PEC cells by increasing the photocurrents and shifting the onset potentials. The high photocurrent is ascribed to the excellent catalytic activity toward water splitting, resulting in a low charge-transfer resistance. The onset potential shift can be determined by the shift of the flat-band potential. A large band bending occurs at the electrolyte interface, so that photoelectrons or photoholes are efficiently generated to accelerate the photocatalytic reaction at the active sites of orthorhombic NiSe2. The remarkable bifunctional photocatalytic activity of orthorhombic NiSe2 promises efficient PEC water splitting.

18.
J Prosthet Dent ; 119(1): 33-35, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28533008

RESUMEN

For the fabrication of a removable partial denture, the orientation of a definitive cast should be recorded and reproduced to indicate the most desirable path of placement and undercut areas. This article describes a straightforward and accurate method of recording and reproducing the cast orientation by using an implant impression coping and an implant analog.


Asunto(s)
Técnica de Impresión Dental , Dentadura Parcial Removible , Diseño de Prótesis Dental
19.
J Adv Prosthodont ; 9(2): 130-137, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28435623

RESUMEN

PURPOSE: The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. MATERIALS AND METHODS: A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength (P<.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. RESULTS: Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. CONCLUSION: Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...