Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39052464

RESUMEN

Cervical length (CL) measurement using transvaginal ultrasound is an effective screening tool to assess the risk of preterm birth. An adequate assessment of CL is crucial, however, manual sonographic CL measurement is highly operator-dependent and cumbersome. Therefore, a reliable and reproducible automatic method for CL measurement is in high demand to reduce inter-rater variability and improve workflow. Despite the increasing use of artificial intelligence techniques in ultrasound, applying deep learning (DL) to analyze ultrasound images of the cervix remains a challenge due to low signal-to-noise ratios and difficulties in capturing the cervical canal, which appears as a thin line and with extremely low contrast against the surrounding tissues. To address these challenges, we have developed CL-Net, a novel DL network that incorporates expert anatomical knowledge to identify the cervix, similar to the approach taken by clinicians. CL-Net captures anatomical features related to CL measurement, facilitating the identification of the cervical canal. It then identifies the cervical canal and automatically provides reproducible and reliable CL measurements. CL-Net achieved a success rate of 95.5% in recognizing the cervical canal, comparable to that of human experts (96.4%). Furthermore, the differences between the CL measurements of CL-Net and ground truth were considerably smaller than those made by non-experts and were comparable to those made by experts (median 1.36 mm, IQR 0.87-2.82 mm, range 0.06-6.95 mm for straight cervix; median 1.31 mm, IQR 0.61-2.65 mm, range 0.01-8.18 mm for curved one).

2.
Med Image Anal ; 93: 103096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301347

RESUMEN

We present a fully automated method of integrating intraoral scan (IOS) and dental cone-beam computerized tomography (CBCT) images into one image by complementing each image's weaknesses. Dental CBCT alone may not be able to delineate precise details of the tooth surface due to limited image resolution and various CBCT artifacts, including metal-induced artifacts. IOS is very accurate for the scanning of narrow areas, but it produces cumulative stitching errors during full-arch scanning. The proposed method is intended not only to compensate the low-quality of CBCT-derived tooth surfaces with IOS, but also to correct the cumulative stitching errors of IOS across the entire dental arch. Moreover, the integration provides both gingival structure of IOS and tooth roots of CBCT in one image. The proposed fully automated method consists of four parts; (i) individual tooth segmentation and identification module for IOS data (TSIM-IOS); (ii) individual tooth segmentation and identification module for CBCT data (TSIM-CBCT); (iii) global-to-local tooth registration between IOS and CBCT; and (iv) stitching error correction for full-arch IOS. The experimental results show that the proposed method achieved landmark and surface distance errors of 112.4µm and 301.7µm, respectively.


Asunto(s)
Tomografía Computarizada de Haz Cónico Espiral , Compuestos de Trimetilsililo , Humanos , Artefactos , Tomografía Computarizada de Haz Cónico , Imidazoles
3.
PLoS One ; 17(9): e0275114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36170279

RESUMEN

Identification of 3D cephalometric landmarks that serve as proxy to the shape of human skull is the fundamental step in cephalometric analysis. Since manual landmarking from 3D computed tomography (CT) images is a cumbersome task even for the trained experts, automatic 3D landmark detection system is in a great need. Recently, automatic landmarking of 2D cephalograms using deep learning (DL) has achieved great success, but 3D landmarking for more than 80 landmarks has not yet reached a satisfactory level, because of the factors hindering machine learning such as the high dimensionality of the input data and limited amount of training data due to the ethical restrictions on the use of medical data. This paper presents a semi-supervised DL method for 3D landmarking that takes advantage of anonymized landmark dataset with paired CT data being removed. The proposed method first detects a small number of easy-to-find reference landmarks, then uses them to provide a rough estimation of the all landmarks by utilizing the low dimensional representation learned by variational autoencoder (VAE). The anonymized landmark dataset is used for training the VAE. Finally, coarse-to-fine detection is applied to the small bounding box provided by rough estimation, using separate strategies suitable for the mandible and the cranium. For mandibular landmarks, patch-based 3D CNN is applied to the segmented image of the mandible (separated from the maxilla), in order to capture 3D morphological features of mandible associated with the landmarks. We detect 6 landmarks around the condyle all at once rather than one by one, because they are closely related to each other. For cranial landmarks, we again use the VAE-based latent representation for more accurate annotation. In our experiment, the proposed method achieved a mean detection error of 2.88 mm for 90 landmarks using only 15 paired training data.


Asunto(s)
Puntos Anatómicos de Referencia , Imagenología Tridimensional , Puntos Anatómicos de Referencia/anatomía & histología , Puntos Anatómicos de Referencia/diagnóstico por imagen , Cefalometría/métodos , Humanos , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Aprendizaje Automático Supervisado , Tomografía Computarizada por Rayos X
4.
Phys Med Biol ; 67(17)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35944531

RESUMEN

Objective.Recently, dental cone-beam computed tomography (CBCT) methods have been improved to significantly reduce radiation dose while maintaining image resolution with minimal equipment cost. In low-dose CBCT environments, metallic inserts such as implants, crowns, and dental fillings cause severe artifacts, which result in a significant loss of morphological structures of teeth in reconstructed images. Such metal artifacts prevent accurate 3D bone-teeth-jaw modeling for diagnosis and treatment planning. However, the performance of existing metal artifact reduction (MAR) methods in handling the loss of the morphological structures of teeth in reconstructed CT images remains relatively limited. In this study, we developed an innovative MAR method to achieve optimal restoration of anatomical details.Approach.The proposed MAR approach is based on a two-stage deep learning-based method. In the first stage, we employ a deep learning network that utilizes intra-oral scan data as side-inputs and performs multi-task learning of auxiliary tooth segmentation. The network is designed to improve the learning ability of capturing teeth-related features effectively while mitigating metal artifacts. In the second stage, a 3D bone-teeth-jaw model is constructed with weighted thresholding, where the weighting region is determined depending on the geometry of the intra-oral scan data.Main results.The results of numerical simulations and clinical experiments are presented to demonstrate the feasibility of the proposed approach.Significance.We propose for the first time a MAR method using radiation-free intra-oral scan data as supplemental information on the tooth morphological structures of teeth, which is designed to perform accurate 3D bone-teeth-jaw modeling in low-dose CBCT environments.


Asunto(s)
Artefactos , Aprendizaje Profundo , Algoritmos , Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador/métodos , Metales , Prótesis e Implantes
5.
Med Phys ; 49(8): 5195-5205, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35582909

RESUMEN

PURPOSE: Dental cone-beam computed tomography (CBCT) has been increasingly used for dental and maxillofacial imaging. However, the presence of metallic inserts, such as implants, crowns, and dental braces, violates the CT model assumption, which leads to severe metal artifacts in the reconstructed CBCT image, resulting in the degradation of diagnostic performance. In this study, we used deep learning to reduce metal artifacts. METHODS: The metal artifacts, appearing as streaks and shadows, are nonlocal and highly associated with various factors, including the geometry of metallic inserts, energy-dependent attenuation, and energy spectrum of the incident X-ray beam, making it difficult to learn their complicated structures directly. To provide a step-by-step environment in which deep learning can be trained, we propose an iterative learning approach in which the network at each iteration step learns the correction error caused by the previous network, while enforcing the data fidelity in the projection domain. To generate a realistic paired training dataset, metal-free CBCT scans were collected from patients without metallic inserts, and then simulated metal projection data were added to generate the corresponding metal-corrupted projection data. RESULTS: The feasibility of the proposed method was investigated in clinical metal-affected CBCT scans, as well as simulated metal-affected CBCT scans. The results show that the proposed method significantly reduces metal artifacts while preserving the morphological structures near metallic objects and outperforms direct image domain learning. CONCLUSION: The proposed fidelity-embedded learning can effectively reduce metal artifacts in dental CBCT compared with direct image domain learning.


Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico Espiral , Algoritmos , Tomografía Computarizada de Haz Cónico , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Metales , Fantasmas de Imagen
6.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 6562-6568, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34077356

RESUMEN

Accurate and automatic segmentation of three-dimensional (3D) individual teeth from cone-beam computerized tomography (CBCT) images is a challenging problem because of the difficulty in separating an individual tooth from adjacent teeth and its surrounding alveolar bone. Thus, this paper proposes a fully automated method of identifying and segmenting 3D individual teeth from dental CBCT images. The proposed method addresses the aforementioned difficulty by developing a deep learning-based hierarchical multi-step model. First, it automatically generates upper and lower jaws panoramic images to overcome the computational complexity caused by high-dimensional data and the curse of dimensionality associated with limited training dataset. The obtained 2D panoramic images are then used to identify 2D individual teeth and capture loose- and tight- regions of interest (ROIs) of 3D individual teeth. Finally, accurate 3D individual tooth segmentation is achieved using both loose and tight ROIs. Experimental results showed that the proposed method achieved an F1-score of 93.35 percent for tooth identification and a Dice similarity coefficient of 94.79 percent for individual 3D tooth segmentation. The results demonstrate that the proposed method provides an effective clinical and practical framework for digital dentistry.


Asunto(s)
Tomografía Computarizada de Haz Cónico Espiral , Diente , Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional/métodos , Diente/diagnóstico por imagen
7.
Med Image Anal ; 69: 101951, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33515982

RESUMEN

The estimation of antenatal amniotic fluid (AF) volume (AFV) is important as it offers crucial information about fetal development, fetal well-being, and perinatal prognosis. However, AFV measurement is cumbersome and patient specific. Moreover, it is heavily sonographer-dependent, with measurement accuracy varying greatly depending on the sonographer's experience. Therefore, the development of accurate, robust, and adoptable methods to evaluate AFV is highly desirable. In this regard, automation is expected to reduce user-based variability and workload of sonographers. However, automating AFV measurement is very challenging, because accurate detection of AF pockets is difficult owing to various confusing factors, such as reverberation artifact, AF mimicking region and floating matter. Furthermore, AF pocket exhibits an unspecified variety of shapes and sizes, and ultrasound images often show missing or incomplete structural boundaries. To overcome the abovementioned difficulties, we develop a hierarchical deep-learning-based method, which consider clinicians' anatomical-knowledge-based approaches. The key step is the segmentation of the AF pocket using our proposed deep learning network, AF-net. AF-net is a variation of U-net combined with three complementary concepts - atrous convolution, multi-scale side-input layer, and side-output layer. The experimental results demonstrate that the proposed method provides a measurement of the amniotic fluid index (AFI) that is as robust and precise as the results from clinicians. The proposed method achieved a Dice similarity of 0.877±0.086 for AF segmentation and achieved a mean absolute error of 2.666±2.986 and mean relative error of 0.018±0.023 for AFI value. To the best of our knowledge, our method, for the first time, provides an automated measurement of AFI.


Asunto(s)
Líquido Amniótico , Aprendizaje Profundo , Líquido Amniótico/diagnóstico por imagen , Femenino , Humanos , Embarazo , Ultrasonografía
8.
Med Image Anal ; 69: 101967, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33517242

RESUMEN

Recently, with the significant developments in deep learning techniques, solving underdetermined inverse problems has become one of the major concerns in the medical imaging domain, where underdetermined problems are motivated by the willingness to provide high resolution medical images with as little data as possible, by optimizing data collection in terms of minimal acquisition time, cost-effectiveness, and low invasiveness. Typical examples include undersampled magnetic resonance imaging(MRI), interior tomography, and sparse-view computed tomography(CT), where deep learning techniques have achieved excellent performances. However, there is a lack of mathematical analysis of why the deep learning method is performing well. This study aims to explain about learning the causal relationship regarding the structure of the training data suitable for deep learning, to solve highly underdetermined problems. We present a particular low-dimensional solution model to highlight the advantage of deep learning methods over conventional methods, where two approaches use the prior information of the solution in a completely different way. We also analyze whether deep learning methods can learn the desired reconstruction map from training data in the three models (undersampled MRI, sparse-view CT, interior tomography). This paper also discusses the nonlinearity structure of underdetermined linear systems and conditions of learning (called M-RIP condition).


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X
9.
Comput Methods Programs Biomed ; 200: 105833, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33250283

RESUMEN

For compression fracture detection and evaluation, an automatic X-ray image segmentation technique that combines deep-learning and level-set methods is proposed. Automatic segmentation is much more difficult for X-ray images than for CT or MRI images because they contain overlapping shadows of thoracoabdominal structures including lungs, bowel gases, and other bony structures such as ribs. Additional difficulties include unclear object boundaries, the complex shape of the vertebra, inter-patient variability, and variations in image contrast. Accordingly, a structured hierarchical segmentation method is presented that combines the advantages of two deep-learning methods. Pose-driven learning is used to selectively identify the five lumbar vertebrae in an accurate and robust manner. With knowledge of the vertebral positions, M-net is employed to segment the individual vertebra. Finally, fine-tuning segmentation is applied by combining the level-set method with the previously obtained segmentation results. The performance of the proposed method was validated by 160 lumbar X-ray images, resulting in a mean Dice similarity metric of 91.60±2.22%. The results show that the proposed method achieves accurate and robust identification of each lumbar vertebra and fine segmentation of individual vertebra.


Asunto(s)
Fracturas por Compresión , Algoritmos , Fracturas por Compresión/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Vértebras Lumbares/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Rayos X
10.
Phys Med Biol ; 65(8): 085018, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32101805

RESUMEN

The annotation of three-dimensional (3D) cephalometric landmarks in 3D computerized tomography (CT) has become an essential part of cephalometric analysis, which is used for diagnosis, surgical planning, and treatment evaluation. The automation of 3D landmarking with high-precision remains challenging due to the limited availability of training data and the high computational burden. This paper addresses these challenges by proposing a hierarchical deep-learning method consisting of four stages: 1) a basic landmark annotator for 3D skull pose normalization, 2) a deep-learning-based coarse-to-fine landmark annotator on the midsagittal plane, 3) a low-dimensional representation of the total number of landmarks using variational autoencoder (VAE), and 4) a local-to-global landmark annotator. The implementation of the VAE allows two-dimensional-image-based 3D morphological feature learning and similarity/dissimilarity representation learning of the concatenated vectors of cephalometric landmarks. The proposed method achieves an average 3D point-to-point error of 3.63 mm for 93 cephalometric landmarks using a small number of training CT datasets. Notably, the VAE captures variations of craniofacial structural characteristics.


Asunto(s)
Puntos Anatómicos de Referencia , Cefalometría , Imagenología Tridimensional/normas , Aprendizaje Automático , Automatización , Humanos , Reproducibilidad de los Resultados , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos X
11.
Artículo en Inglés | MEDLINE | ID: mdl-31221614

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate the accuracy of an optical tracking system during reference point localization, measurement, and registration of skull models for navigational maxillary orthognathic surgery. STUDY DESIGN: Accuracy was first evaluated on the basis of the position recording discrepancy at a static point and at 2 points of fixed lengths. Ten reference points were measured on a skull model at 7 different locations, and their measurements were compared with predicted positions by using 4 registration methods. Finally, positional tracking of reference points for simulated maxillary surgery was performed and compared with laser scan data. RESULTS: The average linear measurement discrepancy was 0.28 mm, and the mean measurement discrepancy with the 5 registered cranial points was 1.53 mm. The average measurement discrepancy after maxillary surgery was 1.91 mm (for impaction) and 1.56 mm (for advancement). The registration discrepancy in jitter and point registration on the y-axis was significantly greater than on the other axes. CONCLUSIONS: The optical tracking system seems clinically acceptable for precise tracking of the maxillary position during navigational orthognathic surgery, notwithstanding the chance of greater measurement error on the y-axis.


Asunto(s)
Procedimientos Quirúrgicos Ortognáticos , Cirugía Asistida por Computador , Imagenología Tridimensional , Maxilar , Cirugía Ortognática
12.
Physiol Meas ; 40(6): 065009, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091515

RESUMEN

OBJECTIVE: Ultrasound-based fetal biometric measurements, such as head circumference (HC) and biparietal diameter (BPD), are frequently used to evaluate gestational age and diagnose fetal central nervous system pathology. Because manual measurements are operator-dependent and time-consuming, much research is being actively conducted on automated methods. However, the existing automated methods are still not satisfactory in terms of accuracy and reliability, owing to difficulties dealing with various artefacts in ultrasound images. APPROACH: Using the proposed method, a labeled dataset containing 102 ultrasound images was used for training, and validation was performed with 70 ultrasound images. MAIN RESULTS: A success rate of 91.43% and 100% for HC and BPD estimations, respectively, and an accuracy of 87.14% for the plane acceptance check. SIGNIFICANCE: This paper focuses on fetal head biometry and proposes a deep-learning-based method for estimating HC and BPD with a high degree of accuracy and reliability.


Asunto(s)
Biometría , Cabeza/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Ultrasonografía Prenatal , Automatización , Cefalometría , Humanos , Análisis de Regresión
13.
Phys Med Biol ; 64(5): 055002, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30669128

RESUMEN

This paper presents a new approach to automatic three-dimensional (3D) cephalometric annotation for diagnosis, surgical planning, and treatment evaluation. There has long been considerable demand for automated cephalometric landmarking, since manual landmarking requires considerable time and experience as well as objectivity and scrupulous error avoidance. Due to the inherent limitation of two-dimensional (2D) cephalometry and the 3D nature of surgical simulation, there is a trend away from current 2D to 3D cephalometry. Deep learning approaches to cephalometric landmarking seem highly promising, but there exist serious difficulties in handling high dimensional 3D CT data, dimension referring to the number of voxels. To address this issue of dimensionality, this paper proposes a shadowed 2D image-based machine learning method which uses multiple shadowed 2D images with various lighting and view directions to capture 3D geometric cues. The proposed method using VGG-net was trained and tested using 2700 shadowed 2D images and corresponding manual landmarkings. Test data evaluation shows that our method achieved an average point-to-point error of 1.5 mm for the seven major landmarks.


Asunto(s)
Puntos Anatómicos de Referencia , Cefalometría/métodos , Imagenología Tridimensional/normas , Aprendizaje Automático , Automatización , Humanos , Reproducibilidad de los Resultados
14.
Med Phys ; 45(12): 5376-5384, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30238586

RESUMEN

PURPOSE: This paper proposes a sinogram-consistency learning method to deal with beam hardening-related artifacts in polychromatic computerized tomography (CT). The presence of highly attenuating materials in the scan field causes an inconsistent sinogram that does not match the range space of the Radon transform. When the mismatched data are entered into the range space during CT reconstruction, streaking and shading artifacts are generated owing to the inherent nature of the inverse Radon transform METHODS: The proposed learning method aims to repair inconsistent sinogram by removing the primary metal-induced beam hardening factors along the metal trace in the sinogram. Taking account of the fundamental difficulty in obtaining sufficient training data in a medical environment, the learning method is designed to use simulated training data and a patient's implant type-specific learning model is used to simplify the learning process. RESULTS: The feasibility of the proposed method is investigated using a dataset, consisting of real CT scans of pelvises containing simulated hip prostheses. The anatomical areas in training and test data are different, in order to demonstrate that the proposed method extracts the beam hardening features, selectively. The results show that our method successfully corrects sinogram inconsistency by extracting beam hardening sources by means of deep learning. CONCLUSION: This paper proposed a deep learning method of sinogram correction for beam hardening reduction in CT for the first time. Conventional methods for beam hardening reduction are based on regularizations, and have the fundamental drawback of being not easily able to use manifold CT images, while a deep learning approach has the potential to do so.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Metales , Tomografía Computarizada por Rayos X , Humanos , Pelvis/diagnóstico por imagen
15.
Physiol Meas ; 39(10): 105007, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30226815

RESUMEN

OBJECTIVE: Obstetricians mainly use ultrasound imaging for fetal biometric measurements. However, such measurements are cumbersome. Hence, there is urgent need for automatic biometric estimation. Automated analysis of ultrasound images is complicated owing to the patient-specific, operator-dependent, and machine-specific characteristics of such images. APPROACH: This paper proposes a method for the automatic fetal biometry estimation from 2D ultrasound data through several processes consisting of a specially designed convolutional neural network (CNN) and U-Net for each process. These machine learning techniques take clinicians' decisions, anatomical structures, and the characteristics of ultrasound images into account. The proposed method is divided into three steps: initial abdominal circumference (AC) estimation, AC measurement, and plane acceptance checking. MAIN RESULTS: A CNN is used to classify ultrasound images (stomach bubble, amniotic fluid, and umbilical vein), and a Hough transform is used to obtain an initial estimate of the AC. These data are applied to other CNNs to estimate the spine position and bone regions. Then, the obtained information is used to determine the final AC. After determining the AC, a U-Net and a classification CNN are used to check whether the image is suitable for AC measurement. Finally, the efficacy of the proposed method is validated by clinical data. SIGNIFICANCE: Our method achieved a Dice similarity metric of [Formula: see text] for AC measurement and an accuracy of 87.10% for our acceptance check of the fetal abdominal standard plane.


Asunto(s)
Abdomen/diagnóstico por imagen , Abdomen/embriología , Biometría/métodos , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático , Ultrasonografía Prenatal/métodos , Abdomen/anatomía & histología , Femenino , Humanos , Reconocimiento de Normas Patrones Automatizadas/métodos , Embarazo
16.
IEEE J Biomed Health Inform ; 22(5): 1512-1520, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990257

RESUMEN

Ultrasound diagnosis is routinely used in obstetrics and gynecology for fetal biometry, and owing to its time-consuming process, there has been a great demand for automatic estimation. However, the automated analysis of ultrasound images is complicated because they are patient specific, operator dependent, and machine specific. Among various types of fetal biometry, the accurate estimation of abdominal circumference (AC) is especially difficult to perform automatically because the abdomen has low contrast against surroundings, nonuniform contrast, and irregular shape compared to other parameters. We propose a method for the automatic estimation of the fetal AC from two-dimensional ultrasound data through a specially designed convolutional neural network (CNN), which takes account of doctors' decision process, anatomical structure, and the characteristics of the ultrasound image. The proposed method uses CNN to classify ultrasound images (stomach bubble, amniotic fluid, and umbilical vein) and Hough transformation for measuring AC. We test the proposed method using clinical ultrasound data acquired from 56 pregnant women. Experimental results show that, with relatively small training samples, the proposed CNN provides sufficient classification results for AC estimation through the Hough transformation. The proposed method automatically estimates AC from ultrasound images. The method is quantitatively evaluated and shows stable performance in most cases and even for ultrasound images deteriorated by shadowing artifacts. As a result of experiments for our acceptance check, the accuracies are 0.809 and 0.771 with expert 1 and expert 2, respectively, whereas the accuracy between the two experts is 0.905. However, for cases of oversized fetus, when the amniotic fluid is not observed or the abdominal area is distorted, it could not correctly estimate AC.


Asunto(s)
Abdomen/diagnóstico por imagen , Feto/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Ultrasonografía Prenatal/métodos , Femenino , Humanos , Redes Neurales de la Computación , Embarazo
17.
Phys Med Biol ; 63(13): 135007, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29787383

RESUMEN

This paper presents a deep learning method for faster magnetic resonance imaging (MRI) by reducing k-space data with sub-Nyquist sampling strategies and provides a rationale for why the proposed approach works well. Uniform subsampling is used in the time-consuming phase-encoding direction to capture high-resolution image information, while permitting the image-folding problem dictated by the Poisson summation formula. To deal with the localization uncertainty due to image folding, a small number of low-frequency k-space data are added. Training the deep learning net involves input and output images that are pairs of the Fourier transforms of the subsampled and fully sampled k-space data. Our experiments show the remarkable performance of the proposed method; only 29[Formula: see text] of the k-space data can generate images of high quality as effectively as standard MRI reconstruction with the fully sampled data.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Algoritmos , Análisis de Fourier , Humanos , Incertidumbre
18.
Int J Numer Method Biomed Eng ; 34(7): e2980, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29521020

RESUMEN

Electrical properties of human tissues are usually linked with structure of thin insulating membranes and thereby reflect physiological function of the tissues or organs. It is clinically important to characterize electrical properties of tissues in vivo. Electrical impedance tomography is a recently developed medical imaging technique, which has been exploited to characterize electrical properties (conductivity and permittivity) of human tissues by injecting currents and measuring the resulting voltages at boundary electrodes. The electrical characteristic of a majority of human tissues, such as bones, muscles, and brain white matter, exhibits an anisotropic property. The anisotropic phenomenon of human tissues is frequency dependent that vanishes at high frequencies. Previous electrical impedance tomography studies that aimed at the reconstruction of anisotropic subject tissues have been focused on the theoretical analysis of uniqueness up to a diffeomorphism or the establishment of an accurate forward model by using an anisotropic conductivity tensor. However, effects of the current frequency on the accuracy of the reconstructions of anisotropic subjects remain poorly studied. The goal of this study is to examine the feasibility of multifrequency electrical impedance tomography by using it in a simulation study to recover the frequency-dependent anisotropic properties of a phantom subject composed of alternating insulating and conductive layers. The anisotropic properties of the subject were analyzed by an effective admittivity tensor, and the responses of the current flow pathways and voltages were investigated at various applied current frequencies in the forward model. The linear reconstruction was performed following the sensitivity matrix approach at multiple frequencies. Simulation results achieved at various frequencies revealed that the anisotropy of the model was effectively reconstructed at low frequencies and disappeared at high frequencies, from which we validated the feasibility of multifrequency electrical impedance tomography method in reconstructing the anisotropic directions of the considered object.


Asunto(s)
Simulación por Computador , Impedancia Eléctrica , Tomografía , Anisotropía , Modelos Teóricos , Análisis Numérico Asistido por Computador
19.
Phys Med Biol ; 63(4): 045011, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29345626

RESUMEN

We sought to improve efficiency of magnetic resonance electrical impedance tomography data acquisition so that fast conductivity changes or electric field variations could be monitored. Undersampling of k-space was used to decrease acquisition times in spin-echo-based sequences by a factor of two. Full MREIT data were reconstructed using continuity assumptions and preliminary scans gathered without current. We found that phase data were reconstructed faithfully from undersampled data. Conductivity reconstructions of phantom data were also possible. Therefore, undersampled k-space methods can potentially be used to accelerate MREIT acquisition. This method could be an advantage in imaging real-time conductivity changes with MREIT.


Asunto(s)
Algoritmos , Conductividad Eléctrica , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Tomografía/métodos , Humanos
20.
IEEE Trans Med Imaging ; 37(9): 1970-1977, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29035213

RESUMEN

Electrical impedance tomography (EIT) provides functional images of an electrical conductivity distribution inside the human body. Since the 1980s, many potential clinical applications have arisen using inexpensive portable EIT devices. EIT acquires multiple trans-impedance measurements across the body from an array of surface electrodes around a chosen imaging slice. The conductivity image reconstruction from the measured data is a fundamentally ill-posed inverse problem notoriously vulnerable to measurement noise and artifacts. Most available methods invert the ill-conditioned sensitivity or the Jacobian matrix using a regularized least-squares data-fitting technique. Their performances rely on the regularization parameter, which controls the trade-off between fidelity and robustness. For clinical applications of EIT, it would be desirable to develop a method achieving consistent performance over various uncertain data, regardless of the choice of the regularization parameter. Based on the analysis of the structure of the Jacobian matrix, we propose a fidelity-embedded regularization (FER) method and a motion artifact reduction filter. Incorporating the Jacobian matrix in the regularization process, the new FER method with the motion artifact reduction filter offers stable reconstructions of high-fidelity images from noisy data by taking a very large regularization parameter value. The proposed method showed practical merits in experimental studies of chest EIT imaging.


Asunto(s)
Impedancia Eléctrica , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Tomografía/métodos , Algoritmos , Humanos , Pruebas de Función Respiratoria/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA