Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5268, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902225

RESUMEN

Since the discovery of two-dimensional electron gas at the LaAlO3/SrTiO3 interface, its intriguing physical properties have garnered significant interests for device applications. Yet, understanding its response to electrical stimuli remains incomplete. Our in-situ transmission electron microscopy analysis of a LaAlO3/SrTiO3 two-dimensional electron gas device under electrical bias reveals key insights. Inline electron holography visualized the field-induced modulation of two-dimensional electron gas at the interface, while electron energy loss spectroscopy showed negligible electromigration of oxygen vacancies. Instead, atom-resolved imaging indicated that electric fields trigger polar distortion in the LaAlO3 layer, affecting two-dimensional electron gas modulation. This study refutes the previously hypothesized role of oxygen vacancies, underscoring the lattice flexibility of LaAlO3 and its varied polar distortions under electric fields as central to two-dimensional electron gas dynamics. These findings open pathways for advanced oxide nanoelectronics, exploiting the interplay of polar and nonpolar distortions in LaAlO3.

2.
Sci Adv ; 10(21): eadk4288, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787951

RESUMEN

KTaO3 heterostructures have recently attracted attention as model systems to study the interplay of quantum paraelectricity, spin-orbit coupling, and superconductivity. However, the high and low vapor pressures of potassium and tantalum present processing challenges to creating heterostructure interfaces clean enough to reveal the intrinsic quantum properties. Here, we report superconducting heterostructures based on high-quality epitaxial (111) KTaO3 thin films using an adsorption-controlled hybrid PLD to overcome the vapor pressure mismatch. Electrical and structural characterizations reveal that the higher-quality heterostructure interface between amorphous LaAlO3 and KTaO3 thin films supports a two-dimensional electron gas with substantially higher electron mobility, superconducting transition temperature, and critical current density than that in bulk single-crystal KTaO3-based heterostructures. Our hybrid approach may enable epitaxial growth of other alkali metal-based oxides that lie beyond the capabilities of conventional methods.

3.
Nat Commun ; 15(1): 1180, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332134

RESUMEN

Charge ordering (CO), characterized by a periodic modulation of electron density and lattice distortion, has been a fundamental topic in condensed matter physics, serving as a potential platform for inducing novel functional properties. The charge-ordered phase is known to occur in a doped system with high d-electron occupancy, rather than low occupancy. Here, we report the realization of the charge-ordered phase in electron-doped (100) SrTiO3 epitaxial thin films that have the lowest d-electron occupancy i.e., d1-d0. Theoretical calculation predicts the presence of a metastable CO state in the bulk state of electron-doped SrTiO3. Atomic scale analysis reveals that (100) surface distortion favors electron-lattice coupling for the charge-ordered state, and triggering the stabilization of the CO phase from a correlated metal state. This stabilization extends up to six unit cells from the top surface to the interior. Our approach offers an insight into the means of stabilizing a new phase of matter, extending CO phase to the lowest electron occupancy and encompassing a wide range of 3d transition metal oxides.

4.
ACS Nano ; 17(15): 14814-14821, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498093

RESUMEN

Chemical dopants enabling a plethora of emergent physical properties have been treated as randomly and uniformly distributed in the frame of a three-dimensional doped system. However, in nanostructured architectures, the location of dopants relative to the interface or boundary can greatly influence device performance. This observation suggests that chemical dopants need to be considered as discrete defects, meaning that geometric control of chemical dopants becomes a critical aspect as the physical size of materials scales down into the nanotechnology regime. Here we show that geometrical control of dopants at the atomic scale is another fundamental parameter in chemical doping, extending beyond the kind and amount of dopants conventionally used. The geometrical control of dopants extends the class of geometrically controlled structures into an unexplored dimensionality, between 2D and 3D. It is well understood that in the middle of the progressive dimensionality change from 3D to 2D, the electronic state of doped SrTiO3 is altered from a highly symmetric charged fluid to a charge disproportionated insulating state. Our results introduce a geometrical control of dopants, namely, geometrical doping, as another axis to provide a variety of emergent electronic states via tuning of the electronic properties of the solid state.

5.
Adv Mater ; 35(40): e2303051, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37358063

RESUMEN

Polar surfaces are intrinsically unstable and thus highly reactive due to the uncompensated surface charges. The charge compensation is accompanied by various surface reconstructions, establishing novel functionality for their applications. The present in situ atomic-scale electron microscopy study directly shows that the atomic step and step-assisted reconstruction play central roles in the charge compensation of polar oxide surfaces. The flat (LaO)+ -terminated LaAlO3 (001) polar surface, when annealed at high temperature in vacuum, transits to the (015) vicinal surface via the dynamic motion and interaction of atomic steps. While the (015) vicinal surface possesses zero polarization along the surface normal, a thermodynamic ground state is achieved when the in-plane polarization is fully compensated via the reconstruction of step-edge atoms; the step-edge La atoms are displaced from their ordinary atomic sites toward the adjacent Al step-edge sites, resulting in the formation of negatively charged La vacancies at the corresponding step edges. As confirmed by first-principles calculations, the observed step reconstruction of (015) vicinal surface can completely cancel both out-of-plane and in-plane electric fields. This hitherto unknown mechanism reveals the central role of step reconstruction in stabilizing a polar surface, providing valuable insights for understanding the novel charge compensation mechanism accompanied by the step reconstruction.

6.
Sci Adv ; 8(48): eadd4644, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459556

RESUMEN

Materials displaying negative Poisson's ratio, referred to as auxeticity, have been found in nature and created in engineering through various structural mechanisms. However, uniting auxeticity with high strength and high stiffness has been challenging. Here, combining in situ nanomechanical testing with microstructure-based modeling, we show that the leading part of limpet teeth successfully achieves this combination of properties through a unique microstructure consisting of an amorphous hydrated silica matrix embedded with bundles of single-crystal iron oxide hydroxide nanorods arranged in a pseudo-cholesteric pattern. During deformation, this microstructure allows local coordinated displacement and rotation of the nanorods, enabling auxetic behavior while maintaining one of the highest strengths among natural materials. These findings lay a foundation for designing biomimetic auxetic materials with extreme strength and high stiffness.

7.
Nat Commun ; 13(1): 5616, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153312

RESUMEN

The evaporation and crystal growth rates of ZnO are highly anisotropic and are fastest on the Zn-terminated ZnO (0001) polar surface. Herein, we study this behavior by direct atomic-scale observations and simulations of the dynamic processes of the ZnO (0001) polar surface during evaporation. The evaporation of the (0001) polar surface is accelerated dramatically at around 300 °C with the spontaneous formation of a few nanometer-thick quasi-liquid layer. This structurally disordered and chemically Zn-deficient quasi-liquid is derived from the formation and inward diffusion of Zn vacancies that stabilize the (0001) polar surface. The quasi-liquid controls the dissociative evaporation of ZnO with establishing steady state reactions with Zn and O2 vapors and the underlying ZnO crystal; while the quasi-liquid catalyzes the disordering of ZnO lattice by injecting Zn vacancies, it facilitates the desorption of O2 molecules. This study reveals that the polarity-driven surface disorder is the key structural feature driving the fast anisotropic evaporation and crystal growth of ZnO nanostructures along the [0001] direction.

8.
Adv Sci (Weinh) ; 9(12): e2105652, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35187807

RESUMEN

The prospect of 2-dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide-bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high-electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO3 -based heterostructures. Here, 2DEG formation at the LaScO3 /BaSnO3 (LSO/BSO) interface with a room-temperature mobility of 60 cm2  V-1  s-1 at a carrier concentration of 1.7 × 1013  cm-2 is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO3 -based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high-temperature treatment, which not only reduces the dislocation density but also produces a SnO2 -terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark-field transmission electron microscopy imaging and in-line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate-based 2DEGs at application-relevant temperatures for oxide nanoelectronics.

10.
Sci Adv ; 7(33)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34389541

RESUMEN

In recent years, lanthanum aluminate/strontium titanate (LAO/STO) heterointerfaces have been used to create a growing family of nanoelectronic devices based on nanoscale control of LAO/STO metal-to-insulator transition. The properties of these devices are wide-ranging, but they are restricted by nature of the underlying thick STO substrate. Here, single-crystal freestanding membranes based on LAO/STO heterostructures were fabricated, which can be directly integrated with other materials via van der Waals stacking. The key properties of LAO/STO are preserved when LAO/STO membranes are formed. Conductive atomic force microscope lithography is shown to successfully create reversible patterns of nanoscale conducting regions, which survive to millikelvin temperatures. The ability to form reconfigurable conducting nanostructures on LAO/STO membranes opens opportunities to integrate a variety of nanoelectronics with silicon-based architectures and flexible, magnetic, or superconducting materials.

11.
Adv Sci (Weinh) ; 8(14): e2002073, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34029001

RESUMEN

The origin of 2D electron gas (2DEG) at LaAlO3 /SrTiO3 (LAO/STO) interfaces has remained highly controversial since its discovery. Various models are proposed, which include electronic reconstruction via surface-to-interface charge transfer and defect-mediated doping involving cation intermixing or oxygen vacancy (VO ) formation. It is shown that the polar field-assisted VO formation at the LAO/STO surface plays critical roles in the 2DEG formation and concurrent structural transition. Comprehensive scanning transmission electron microscopy analyses, in conjunction with density functional theory calculations, demonstrate that VO forming at the LAO/STO surface above the critical thickness (tc ) cancels the polar field by doping the interface with 2DEG. The antiferrodistortive (AFD) octahedral rotations in LAO, which are suppressed below the tc , evolve with the formation of VO above the tc . The present study reveals that local symmetry breaking and shallow donor behavior of VO induce the AFD rotations and relieve the electrical field by electron doping the oxide heterointerface.

12.
Sci Adv ; 7(17)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33883134

RESUMEN

Polarity discontinuity across LaAlO3/SrTiO3 (LAO/STO) heterostructures induces electronic reconstruction involving the formation of two-dimensional electron gas (2DEG) and structural distortions characterized by antiferrodistortive (AFD) rotation and ferroelectric (FE) distortion. We show that AFD and FE modes are cooperatively coupled in LAO/STO (111) heterostructures; they coexist below the critical thickness (t c) and disappear simultaneously above t c with the formation of 2DEG. Electron energy-loss spectroscopy and density functional theory (DFT) calculations provide direct evidence of oxygen vacancy (V O) formation at the LAO (111) surface, which acts as the source of 2DEG. Tracing the AFD rotation and FE distortion of LAO reveals that their evolution is strongly correlated with V O distribution. The present study demonstrates that AFD and FE modes in oxide heterostructures emerge as a consequence of interplay between misfit strain and polar field, and further that their combination can be tuned to competitive or cooperative coupling by changing the interface orientation.

13.
Ultramicroscopy ; 231: 113236, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33676771

RESUMEN

Interface charges confined within a few nanometers of hetero-interface can be characterized by measuring the phase shift of the transmitted beam using different electron holography techniques. However, reliable measurement of the electrostatic potential arising from the interface charges is challenging as the mean inner potential difference (ΔV0) between two adjoining materials as well as local variation of the sample thickness affect the phase shift. In the present study, we show how electron holography can be used to characterize the confined charges at an oxide hetero-interface and evaluate the applicability of different techniques for this purpose. The model system chosen for this study is a LaAlO3/SrTiO3 (LAO/STO) (111) hetero-interface featuring a two-dimensional electron gas (2DEG), where the ΔV0 between LAO and STO is about 2 eV, which is unignorably large and dominates the net potential variation across the interface. For transmission electron microscopy specimens prepared by focused ion beam we applied three different variants of electron holography techniques: off-axis, inline and hybrid electron holography; and compare the results obtained by these approaches in terms of the information transfer in the spatial frequency domain, and the signal-to-noise ratio of the electric field and charge density maps. To correctly assess the information pertinent to the interface-confined charges, we calculate the electrostatic potential and electric field distribution based on a charge model with taking account of the ΔV0 between LAO and STO and compared the calculated profiles with the experimental results after calibrating the local thickness variation across the LAO/STO interface. The results show that hybrid electron holography recovers the information across a wide range of spatial frequencies, and as a result, delivers the most reliable charge density information, albeit convoluted with the unavoidable effects arising from ΔV0.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA