Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(5): 5338-5344, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343916

RESUMEN

Mesoporous materials have gained considerable attention in the fabrication of supercapacitor electrodes because of their large surface areas and controlled porosities. This study reports the synthesis of mesoporous CuCo2O4 powders using the inverse micelle method. X-ray diffraction, N2 sorption measurement, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to investigate the properties of the powders. After heat treatment at 250 °C in a vacuum atmosphere, the mesoporous CuCo2O4 powders exhibited a large specific surface area of 116.32 m2 g-1 and a high crystallinity. The electrode fabricated by using the as-prepared mesoporous CuCo2O4 powder exhibited enhanced electrical properties with a maximum specific capacitance of 140 F g-1 and capacitance retention of 91.4% after 3000 continuous charge-discharge cycles. Therefore, the as-prepared mesoporous CuCo2O4 powders hold great potential in the fabrication of supercapacitor electrodes to be used for a wide range of electrochemical applications.

2.
J Colloid Interface Sci ; 416: 19-24, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24370396

RESUMEN

In this study, a facile membrane modification method by spin-coating of pyrrole (Py) monomers dissolved in a volatile solvent followed by an interfacial polymerization is proposed. The surface of a commercial anion-exchange membrane (i.e., Neosepta-AFX, Astom Corp., Japan) was successfully modified with polypyrrole (Ppy) to improve the acid recovery performance in diffusion dialysis (DD). The result of DD experiments revealed that both the acid and metal ion transports are significantly influenced by the surface modification. The metal crossover through the membranes was largely reduced while mostly maintaining the acid permeability by introducing a thin Ppy layer with excellent repelling property to cations on the membrane surface. As a result, the anion-exchange membrane modified with the optimum content of Py monomer (5 vol.%) exhibited excellent acid dialysis coefficient (KAcid) and selectivity (KAcid/KMetal) which is approximately twice as high as that of the pristine membrane.


Asunto(s)
Resinas de Intercambio Aniónico/química , Cloruros/química , Compuestos Férricos/química , Polímeros/química , Pirroles/química , Aniones , Diálisis , Difusión , Intercambio Iónico , Membranas Artificiales , Propiedades de Superficie
3.
Sci Rep ; 3: 1459, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23492854

RESUMEN

Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a "dream" display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays.


Asunto(s)
Aniones/química , Óxidos/química , Semiconductores , Transistores Electrónicos , Cristalografía por Rayos X , Nitrógeno/química , Oxígeno/química , Óxido de Zinc/química
4.
Water Res ; 45(17): 5375-80, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21777933

RESUMEN

A noble electrode for capacitive deionization (CDI) was prepared by embedding ion exchanger onto the surface of a carbon electrode to practice membrane capacitive deionization (MCDI). Bromomethylated poly (2, 6-dimethyl-1, 4-phenylene oxide) (BPPO) was sprayed on carbon cloth followed by sulfonation and amination to form cation exchange and anion exchange layers, respectively. The ion exchange layers were examined by Scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FT-IR). The SEM image showed that the woven carbon cloth was well coated and connected with BPPO. The FT-IR spectrum revealed that sulfonic and amine functional groups were attached on the cationexchange and anionexchange electrodes, respectively. The advantages of the developed carbon electrodes have been successively demonstrated in a batch and a continuous mode CDI operations without ion exchange membranes for salt removal using 100 mg/L NaCl solution.


Asunto(s)
Membranas Artificiales , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Adsorción , Conductividad Eléctrica , Electrodos , Intercambio Iónico , Iones , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
5.
Phys Chem Chem Phys ; 12(46): 15291-300, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20953477

RESUMEN

Interfacial resistances between the polymer electrolyte membrane (PEM) and catalyst layer (CL) in membrane-electrode assemblies (MEAs) have yet to be systematically examined in spite of its great importance on the fuel cell performance. In order to investigate ionic transport through the PEM/CL interface, the symmetrical impedance mode (SIM) was employed in which the same type of gas was injected (H(2)/H(2)). In this study, the ionic transport resistance at the interface was controlled by the additionally sprayed outer ionomer on the surface of each CL. Effectiveness of the outer ionomer on ionic transport at the interface was quantitatively explained by the reduced contact, proton hydration, and charge transport resistances in the SIM. To characterize the ionic transport resistance, the concept of total resistance (R(tot)) in the SIM was introduced, representing the overall ohmic loss due to proton transport in an MEA. This concept was successfully supported via an agreement of the interpretation and the linear correlation that was obtained between the admittance (1/R(tot)) and the performance of a fuel cell in the ohmic loss region. This correlation will enable researchers to predict the performance of a fuel cell under the influence of proton transport by examining the R(tot) in the SIM.

6.
J Phys Chem B ; 114(41): 13121-7, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20873845

RESUMEN

For development of proton conductive membranes, it is a difficult dilemma to balance proton conductivity and methanol permeability; however, this research proposes a simple strategy to solve this problem, i.e., embedding a proton conductive "barrier" into the perflorosulfonated matrix. The strategy is exemplified by embedding the amphoteric sulfonated poly(phthalazinone ether sulfone kentone) (SPPESK) into a semicrystalline perflorosulfonic acid polymer matrix (FSP). After being annealed, the domain of SPPESK is converted to the barrier. Two acid-base interactions constitute the barrier for both the transfer of protons and the blockage of methanol, respectively. On one hand, poorly hydrophilic ionic acid-base interactions (-SO(3)(-)...NH(+)-) are formed between sulfonic acid group and phthalazinone group through annealing and are useful for methanol blocking. On the other hand, more hydrophilic hydrogen-bonded acid-base interaction (-SO(3)H...(H(2)O)(n)...N-, n ≤ 3) can also be formed under hydrated condition and facilitate proton transport according to the Grotthuss-type mechanism. As a result, the final membrane exhibits an extremely low methanol permeability (30% of that of Nafion-112) and an excellent fuel cell performance (as compared with Nafion-112 at 80 °C).

7.
Water Res ; 44(7): 2267-75, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19897222

RESUMEN

Capacitive deionization (CDI) for removal of water hardness was investigated for water softening applications. In order to examine the wettability and pore structure of the activated carbon cloth and composites electrodes, surface morphological and electrochemical characteristics were observed. The highly wettable electrode surface exhibited faster adsorption/desorption of ions in a continuous treatment system. In addition, the stack as well as unit cell operations were performed to investigate preferential removal of the hardness ions, showing higher selectivity of divalent ions rather than that of the monovalent ion. Interestingly, competitive substitution was observed in which the adsorbed Na ions were replaced by more strongly adsorptive Ca and Mg ions. The preferential removal of divalent ions was explained in terms of ion selectivity and pore characteristics in electrodes. Finally, optimal pore size and structure of carbon electrodes for efficient removal of divalent ions were extensively discussed.


Asunto(s)
Técnicas Electroquímicas/métodos , Iones/aislamiento & purificación , Purificación del Agua/métodos , Ablandamiento del Agua/métodos , Carbono/química , Cationes Bivalentes/aislamiento & purificación , Cationes Monovalentes/aislamiento & purificación , Carbón Orgánico/química , Técnicas Electroquímicas/instrumentación , Electrodos , Microscopía Electrónica de Rastreo , Porosidad , Propiedades de Superficie , Humectabilidad
8.
J Phys Chem B ; 113(36): 12265-70, 2009 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-19685918

RESUMEN

Different from H(3)O(+) transport as in the vehicle mechanism, protons find another channel to transfer through the poorly hydrophilic interlayers in a hydrated multiphase membrane. This membrane was prepared from poly(phthalazinone ether sulfone kentone) (SPPESK) and H(+)-form perfluorosulfonic resin (FSP), and poorly hydrophilic electrostatically interacted acid-base pairs constitute the interlayer between two hydrophilic phases (FSP and SPPESK). By hydrogen bonds forming and breaking between acid-base pairs and water molecules, protons transport directly through these poorly hydrophilic zones. The multiphase membrane, due to this unique transfer mechanism, exhibits better electrochemical performances during fuel cell tests than those of pure FSP and Nafion-112 membranes: 0.09-0.12 S cm(-1) of proton conductivity at 25 degrees C and 990 mW cm(-2) of the maximum power density at a current density of 2600 mA cm(-2) and a cell voltage of 0.38 V.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...