Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(9): e2303079, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37487578

RESUMEN

The transmission and pathogenesis of highly contagious fatal respiratory viruses are increasing, and the need for an on-site diagnostic platform has arisen as an issue worldwide. Furthermore, as the spread of respiratory viruses continues, different variants have become the dominant circulating strains. To prevent virus transmission, the development of highly sensitive and accurate on-site diagnostic assays is urgently needed. Herein, a facile diagnostic device is presented for multi-detection based on the results of detailed receptor-ligand dynamics simulations for the screening of various viral strains. The novel bioreceptor-treated electronics (receptonics) device consists of a multichannel graphene transistor and cell-entry receptors conjugated to N-heterocyclic carbene (NHC). An ultrasensitive multi-detection performance is achieved without the need for sample pretreatment, which will enable rapid diagnosis and prevent the spread of pathogens. This platform can be applied for the diagnosis of variants of concern in clinical respiratory virus samples and primate models. This multi-screening platform can be used to enhance surveillance and discriminate emerging virus variants before they become a severe threat to public health.


Asunto(s)
Bioensayo , Grafito , Animales , Ligandos , Electrónica
2.
Biosens Bioelectron ; 246: 115859, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38011776

RESUMEN

We developed a novel strategy for discriminative detection of SARS-CoV-2 variants based on the plasmonic photothermal effect of gold nanofilms and digital polymerase chain reaction (dPCR) technology. This method consists of the gold nanofilm-based dPCR chip fabrication for ultrafast heating and cooling cycles by the plasmonic photothermal effect, the LED quencher immobilization through the interfacing compound on the surface of the gold nanofilm to prevent photoquenching of PCR signaling dye, and the discriminative detection of the variant viruses from the COVID-19 clinical samples by photothermal cycles with fabricated dPCR chips and a portable plasmonic PCR device. Compared to conventional sequencing or RT-qPCR-based variant detection methods, this technology can be effectively applied to point-of-care testing by enabling ultrafast quantitative analysis with a small device. With this method, we successfully detected the delta variant and the omicron variant with a high sensitivity of 10 copies from COVID-19 patients' clinical samples within 25 min, including reverse transcription. This method can be applied universally to rapid and accurate point-of-care testing for various pandemic viruses as well as the coronavirus.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , COVID-19/diagnóstico , Prueba de COVID-19 , Oro , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética , Sensibilidad y Especificidad
3.
ACS Nano ; 17(24): 25405-25418, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060256

RESUMEN

γ-Hydroxybutyrate (GHB), a date-rape drug, causes certain symptoms, such as amnesia, confusion, ataxia, and unconsciousness, when dissolved in beverages and consumed by a victim. Commonly, assailants use GHB in secret for the crime of drug-facilitated sexual assault because it is tasteless, odorless, and colorless when dissolved in beverages. Generally, GHB detection methods are difficult to use promptly and secretly in situ and in real life because of the necessary detection equipment and low selectivity. To overcome this problem, we have developed a fast, simple, and easy-to-use second skin platform as a confidential self-protection platform that can detect GHB in situ or in real life without equipment. The second skin platform for naked-eye detection of GHB is fabricated with poly(vinyl alcohol) (PVA), polyurethane (PU), and polyacrylonitrile (PAN) included in the chemical receptor 2-(3-bromo-4-hydroxystyryl)-3-ethylbenzothiazol-3-ium iodide (BHEI). PAN conjugated with BHEI nanofibers (PB NFs) has various characteristics, such as ease of use, high sensitivity, and fast color change. PB NFs rapidly detected GHB at 0.01 mg/mL. Furthermore, the second-skin platform attached to the fingertip and wrist detected both 1 and 0.1 mg/mL GHB in solution within 50 s. The color changes caused by the interaction of GHB and the second skin platform cannot be stopped due to strong chemical reactions. In addition, a second skin platform can be secretly utilized in real life because it can recognize fingerprints and object temperatures. Therefore, the second skin platform can be used to aid daily life and prevent drug-facilitated sexual assault crime when attached to the skin because it can be exposed anytime and anywhere.


Asunto(s)
Violación , Oxibato de Sodio , Etanol
4.
Nano Converg ; 10(1): 51, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902883

RESUMEN

Antibody sensor to detect viruses has been widely used but has problems such as the difficulty of right direction control of the receptor site on solid substrate, and long time and high cost for design and production of antibodies to new emerging viruses. The virus detection sensor with a recombinant protein embedded liposome (R/Li) was newly developed to solve the above problems, in which R/Li was assembled on AuNPs (Au@R/Li) to increase the sensitivity using localized surface plasmon resonance (LSPR) method. Recombinant angiotensin-converting enzyme-2 (ACE2) was used as host receptors of SARS-CoV and SARS-CoV-2, and the direction of enzyme active site for virus attachment could be controlled by the integration with liposome. The recombinant protein embedded liposomes were assembled on AuNPs, and LSPR method was used for detection. With the sensor platform S1 protein of both viruses was detected with detection limit of 10 pg/ml and SARS-CoV-2 in clinical samples was detected with 10 ~ 35 Ct values. In the selectivity test, MERS-CoV did not show a signal due to no binding with Au@R/Li. The proposed sensor platform can be used as promising detection method with high sensitivity and selectivity for the early and simple diagnosis of new emerging viruses.

5.
ACS Sens ; 8(6): 2169-2178, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37161992

RESUMEN

Nanoplasmonic sensors are a widely known concept and have been studied with various applications. Among them, gas detection is engaging attention in many fields. However, the analysis performance of nanoplasmonic sensors based on refractive index confined to the metal nanostructure characteristics causes challenges in gas detection. In this study, we develop a graphene-encased gold nanorod (AuNR)-based nanoplasmonic sensor to detect cadaverine gas. The graphene-encased AuNR (Gr@AuNR) presents an ultrasensitive peak wavelength shift even with tiny molecules. In addition, the external potential transmitted through graphene induces an additional shift. A chemical receptor is immobilized on Gr@AuNR (CR@Gr@AuNR) for selectively capturing cadaverine. The CR@Gr@AuNR achieves ultrasensitive detection of cadaverine gas, and the detection limit is increased to 15.99 ppb by applying a voltage to graphene. Furthermore, the experimental results of measuring cadaverine generated from spoiled pork show the practicality of CR@Gr@AuNR. The strategy of external-boosted nanoplasmonics provides new insight into plasmonic sensing and applications.


Asunto(s)
Grafito , Nanotubos , Grafito/química , Oro/química , Cadaverina , Nanotubos/química
6.
Adv Mater ; 35(19): e2206198, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36856042

RESUMEN

The sense of spiciness is related to the stimulation of vanilloid compounds contained in the foods. Although, the spiciness is commonly considered as the part of taste, it is more classified to the sense of pain stimulated on a tongue, namely, pungency, which is described as a tingling or burning on the tongue. Herein, first, a reusable electronic tongue based on a transient receptor potential vanilloid 1 (TRPV1) nanodisc conjugated graphene field-effect transistor is fabricated and spiciness-related pain evaluation with reusable electrode is demonstrated. The pungent compound reactive receptor TRPV1 is synthesized in the form of nanodiscs to maintain stability and reusability. The newly developed platform shows highly selective and sensitive performance toward each spiciness related vanilloid compound repeatably: 1 aM capsaicin, 10 aM dihydrocapsaicin, 1 fM piperine, 10 nM allicin, and 1 pM AITC. The binding mechanism is also examined by simulation. Furthermore, the elimination of the burning sensation on the tongue after eating spicy foods is not investigated. Based on the synthesis of micelles composed of casein protein (which is contained in skim milk) that remove pungent compounds bound to TRPV1 nanodisc, the deactivation of TRPV1 is investigated, and the electrode is reusable that mimics electronic tongue.


Asunto(s)
Nariz Electrónica , Dolor , Gusto , Humanos , Grafito
7.
Anal Chem ; 95(13): 5532-5541, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36947869

RESUMEN

There has been a continuous effort to fabricate a fast, sensitive, and inexpensive system for influenza virus detection to meet the demand for effective screening in point-of-care testing. Herein, we report a sialic acid (SA)-conjugated graphene field-effect transistor (SA-GFET) sensor designed using α2,3-linked sialic acid (3'-SA) and α2,6-linked sialic acid (6'-SA) for the detection and discrimination of the hemagglutinin (HA) protein of the H5N2 and H1N1 viruses. 3'-SA and 6'-SA specific for H5 and H1 influenza were used in the SA-GFET to capture the HA protein of the influenza virus. The net charge of the captured viral sample led to a change in the electrical current of the SA-GFET platform, which could be correlated to the concentration of the viral sample. This SA-GFET platform exhibited a highly sensitive response in the range of 101-106 pfu mL-1, with a limit of detection (LOD) of 101 pfu mL-1 in buffer solution and a response time of approximately 10 s. The selectivity of the SA-GFET platform for the H1N1 and H5N2 influenza viruses was verified by testing analogous respiratory viruses, i.e., influenza B and the spike protein of SARS-CoV-2 and MERS-CoV, on the SA-GFET. Overall, the results demonstrate that the developed dual-channel SA-GFET platform can potentially serve as a highly efficient and sensitive sensing platform for the rapid detection of infectious diseases.


Asunto(s)
COVID-19 , Grafito , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Grafito/metabolismo , Subtipo H5N2 del Virus de la Influenza A/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , Hemaglutininas/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza
8.
Sens Actuators B Chem ; 381: 133364, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36684645

RESUMEN

Since December 2019, the rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a priority for public health. Although the lateral flow assay (LFA) sensor has emerged as a rapid and on-site SARS-CoV-2 detection technique, the conventional approach of using gold nanoparticles for the signaling probe had limitations in increasing the sensitivity of the sensor. Herein, our newly suggested methodology to improve the performance of the LFA system could amplify the sensor signal with a facile fabrication method by concentrating fluorescent organic molecules. A large Stokes shift fluorophore (single benzene) was encapsulated into polystyrene nanobeads to enhance the fluorescence intensity of the probe for LFA sensor, which was detected on the test line with a longpass filter under ultraviolet light irradiation. This approach provides comparatively high sensitivity with the limit of detection of 1 ng mL-1 for the SARS-CoV-2 spike protein and a fast detection process, which takes less than 20 min. Furthermore, our sensor showed higher performance than gold nanoparticle-based commercial rapid diagnostics test kits in clinical tests, proving that this approach is more suitable and reliable for the sensitive and rapid detection of viruses, bacteria, and other hazardous materials.

9.
ACS Omega ; 7(41): 36441-36447, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278091

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) agonists that bind to the vanilloid pocket are being actively studied in the pharmaceutical industry to develop novel treatments for chronic pain and cancer. To discover synthetic vanilloids without the side effect of capsaicin, a time-consuming process of drug candidate selection is essential to a myriad of chemical compounds. Herein, we propose a novel approach to field-effect transistors for the fast and facile screening of lead vanilloid compounds for the development of TRPV1-targeting medications. The graphene field-effect transistor was fabricated with human TRPV1 receptor protein as the bioprobe, and various analyses (SEM, Raman, and FT-IR) were utilized to verify successful manufacture. Simulations of TRPV1 with capsaicin, olvanil, and arvanil were conducted using AutoDock Vina/PyMOL to confirm the binding affinity. The interaction of the ligands with TRPV1 was detected via the fabricated platform, and the collected responses corresponded to the simulation analysis.

10.
Angew Chem Int Ed Engl ; 61(41): e202209726, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35969510

RESUMEN

Organic interfacial compounds (OICs) are required as linkers for the highly stable and efficient immobilization of bioprobes in nanobiosensors using 2D nanomaterials such as graphene. Herein, we first demonstrated the fabrication of a field-effect transistor (FET) via a microelectromechanical system process after covalent functionalization on large-scale graphene by introducing oligo(phenylene-ethynylene)amine (OPE). OPE was compared to various OICs by density functional theory simulations and was confirmed to have a higher binding energy with graphene and a lower band gap than other OICs. OPE can improve the immobilization efficiency of a bioprobe by forming a self-assembly monolayer via anion-based reaction. Using this technology, Magainin I-conjugated OGMFET (MOGMFET) showed a high sensitivity, high selectivity, with a limit of detection of 100  cfu mL-1 . These results indicate that the OPE OIC can be applied for stable and comfortable interfacing technology for biosensor fabrication.


Asunto(s)
Técnicas Biosensibles , Grafito , Aminas , Técnicas Biosensibles/métodos , Grafito/química , Polímeros/química
11.
Nano Converg ; 9(1): 31, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35829851

RESUMEN

Adequate serotonin levels are pivotal to human well-being; thus, serotonin can be used as a biomarker because it regulates a wide range of physical and psychological functions. As an imbalance of serotonin is highly likely to initiate the pathogenesis of various disorders, monitoring serotonin levels in real time is in high demand for the early detection of disease. We fabricated a field-effect transistor (FET) biosensor based on aptamer-immobilized conducting polymer nanohybrids, which showed an instantaneous response toward serotonin in solution. The mechanism of serotonin detection was based on aptamer deformation after aptamer-ligand interaction and the consequential decrease in the charge carrier density of the FET template. Docking simulations with AutoDock/Vina and PyMOL were successfully used to investigate the binding site of serotonin in the loop structure of the aptamer. The fabricated FET template showed high sensitivity toward serotonin in the range of 10 fM to 100 nM, and the limit of detection (LOD) was exceptionally low at 10 fM. Moreover, the selectivity toward serotonin was confirmed by observing no signal after the injection of structural analogs, functional analogs and excess physiological biomolecules. The potential clinical application of this sensor was confirmed because it remained consistent when the buffer solution was exchanged for artificial serum or artificial cerebrospinal fluid (CSF). † S.G.L. and S.E.S. contributed equally to this work.

12.
Biosens Bioelectron ; 215: 114551, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839622

RESUMEN

Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.


Asunto(s)
Técnicas Biosensibles , Receptores Odorantes , Técnicas Biosensibles/métodos , Cadaverina , Nariz Electrónica , Putrescina , Receptores Odorantes/química , Reproducibilidad de los Resultados
13.
Biosens Bioelectron ; 207: 114195, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35325719

RESUMEN

Due to the increase in drug-facilitated sexual assault (DFSA) enabled by the illegal use of drugs, there have been constant demands for simple methods that can be used to protect oneself against crime in real life. γ-Hydroxybutyric acid (GHB), a central nervous system depressant, is one of the most dangerous drugs for use in DFSA because it is colorless and has slow physiological effects, which pose challenges for developing in situ, real-time GHB monitoring techniques. In this study, we developed a method for in situ colorimetric GHB detection using various self-protection products (SPPs) coated with 2-(3-bromo-4-hydroxystyryl)-3-ethylbenzothiazol-3-ium iodide (BHEI) as a chemical receptor embedded in hydrogels. Additionally, smartphone-based detection offers enhanced colorimetric sensitivity compared to that of the naked eye. The developed SPPs will help address drug-facilitated social problems.


Asunto(s)
Técnicas Biosensibles , Oxibato de Sodio , Colorimetría , Hidrogeles , Hidroxibutiratos
14.
ACS Appl Mater Interfaces ; 14(3): 4132-4143, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35019270

RESUMEN

Efficient and long-term stable triplet-triplet annihilation upconversion (TTA-UC) can be achieved by effectively protecting the excited organic triplet ensembles from photoinduced oxygen quenching, and discovery of a new material platform that promotes TTA-UC in ambient conditions is of paramount importance for practical applications. In this study, we present the first demonstration of an organic nonparaffin phase-change material (PCM) as an air-tolerant medium for TTA-UC with a unique solid-liquid phase transition in response to temperature variation. For the proposed concept, 2,4-hexadien-1-ol is used and extensively characterized with several key features, including good solvation capacity, mild melting point (30.5 °C), and exclusive antioxidant property, enabling a high-efficiency, low-threshold, and photostable TTA-UC system without energy-intensive degassing processes. In-depth characterization reveals that the triplet diffusion among the transient species, i.e., 3sensitizer* and 3acceptor*, is efficient and well protected from oxygen quenching in both aerated liquid- and solid-phase 2,4-hexadien-1-ol. We also propose a new strategy for the nanoencapsulation of PCM by employing hollow mesoporous silica nanoparticles as vehicles. This scheme is applicable to both aqueous- and solid-phase TTA-UC systems as well as suitable for various applications, such as thermal energy storage and smart drug delivery.

15.
ACS Sens ; 7(1): 99-108, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34995062

RESUMEN

The necessity of managing stress levels is becoming increasingly apparent as the world suffers from different kinds of stresses including the extent of pandemic, the corona virus disease 2019 (COVID-19). Cortisol, a clinically confirmed stress hormone related to depression and anxiety, affects individuals mentally and physically. However, current cortisol monitoring methods require expert personnel, large and complex machines, and long time for data analysis. Here, we present a flexible and wearable cortisol aptasensor for simple and rapid cortisol real-time monitoring. The sensing channel was produced by electrospinning conducting polyacrylonitrile (PAN) nanofibers (NFs) and subsequent vapor deposition of carboxylated poly(3,4-ethylenedioxythiophene) (PEDOT). The conjugation of the cortisol aptamer on the PEDOT-PAN NFs provided the critical sensing mechanism for the target molecule. The sensing test was performed with a liquid-ion gated field-effect transistor (FET) on a polyester (polyethylene terepthalate). The sensor performance showed a detection limit of 10 pM (<5 s) and high selectivity in the presence of interference materials at 100 times higher concentrations. The practical usage and real-time monitoring of the cortisol aptasensor with a liquid-ion gated FET system was demonstrated by successful transfer to the swab and the skin. In addition, the real-time monitoring of actual sweat by applying the cortisol aptasensor was also successful since the aptasensor was able to detect cortisol approximately 1 nM from actual sweat in a few minutes. This wearable biosensor platform supports the possibility of further application and on-site monitoring for changes of other numerous biomarkers.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Dispositivos Electrónicos Vestibles , Humanos , Hidrocortisona , SARS-CoV-2
16.
Biosens Bioelectron ; 200: 113908, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34972042

RESUMEN

Monitoring food spoilage is one of the most effective methods for preventing food poisoning caused by biogenic amines or microbes. Therefore, various analytical techniques have been introduced to detect low concentrations of cadaverine (CV) and putrescine (PT), which are representative biogenic polyamines involved in food spoilage (5-8 ppm at the stage of initial decomposition after storage for 5 days at 5 °C and 17-186 ppm at the stage of advanced decomposition after storage for 7 days at 5 °C). Although previous methods showed selective CV and PT detection even at low concentrations, the use of these methods remains challenging in research areas that require in-situ, real-time, on-site monitoring. In this study, we demonstrated for the first time an in-situ high-performance chemical receptor-conjugated graphene electronic nose (CRGE-nose) whose limits of detection (LODs), 27.04 and 7.29 ppb, for CV and PT are up to 102 times more sensitive than those of conventional biogenic amine sensors. Specifically, the novel chemical receptors 2,7-bis(3-morpholinopropyl)benzo[lmn][3,8] phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiMor (NPM)) and 2,7-bis(2-((3-morpholinopropyl)amino)ethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NaPhdiEtAmMor (NPEAM)) were designed on the basis of density functional theory (DFT) calculations, and their interaction mechanism was characterized by a DFT 3D simulation. Interestingly, the CRGE-nose was connected on a micro sim chip substrate via wire bonding and then integrated into wireless portable devices, resulting in a cost-effective, high-performance prototype CRGE-nose device capable of on-site detection. The portable CRGE-nose can be used for in-situ monitoring of CV and PT concentration changes as low as 27.04 and 7.29 ppb in real meats such as pork, beef, lamb and chicken.


Asunto(s)
Técnicas Biosensibles , Grafito , Animales , Aminas Biogénicas , Cadaverina , Bovinos , Nariz Electrónica , Putrescina , Ovinos
17.
Biosens Bioelectron ; 174: 112804, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257183

RESUMEN

In this paper, we propose a novel field-effect transistor (FET) using graphene, which is a two-dimensional (2D) nanomaterial, capable of evaluating water quality, and immobilizing the surface of a graphene micropatterned transistor with a highly responsive bioprobe for a water contamination indicator, geosmin, with high selectivity. A high-quality bioprobe-immobilized graphene FET (GFET) was fabricated for the real-time monitoring of geosmin using a liquid-gate measurement configuration. Immobilization was confirmed by measuring the change in the electrical characteristics of the platform (slope of the current-voltage (I-V) curve) and fluorescence images. In addition, a selectivity test showed remarkable implementation of the highly sensitive sensing platform with an insignificant signal when a nontarget was added. Using the fabricated device, the linear range for geosmin detection was determined to be from 0.01 nM - 1 µM with a detection limit of 0.01 nM. In addition, geosmin concentrations as low as 10 nM could be determined from river water samples with the sensor platform. This sensor can be utilized to immediately determine the presence of odorous substances by analyzing a water supply source without additional pretreatment. Another advantage is that the sensor device is a promising tool that does not have special equipment that requirs careful maintenance. In addition, the device provides a new platform for detecting harmful substances in various water sources by varying the bioprobes that are empolyed.


Asunto(s)
Técnicas Biosensibles , Grafito , Naftoles , Transistores Electrónicos
18.
Biosens Bioelectron ; 167: 112514, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866713

RESUMEN

Current techniques for Gram-typing and for diagnosing a pathogen at the early infection stage rely on Gram stains, cultures, Enzyme linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and gene microarrays, which are labor-intensive and time-consuming approaches. In addition, a delayed or imprecise diagnosis of clinical pathogenic bacteria leads to a life-threatening emergency or overuse of antibiotics and a high-rate occurrence of antimicrobial-resistance microbes. Herein, we report high-performance antibiotics (as bioprobes) conjugated graphene micropattern field-effect transistors (ABX-GMFETs) to facilitate on-site Gram-typing and help in the detection of the presence or absence of Gram-negative and -positive bacteria in the samples. The ABX-GMFET platform, which consists of recognition probes and GM transistors conjugated with novel interfacing chemical compounds, was integrated into the microfluidics to minimize the required human intervention and facilitate automation. The mechanism of binding of ABX-GMFET was based on a charge or chemical moiety interaction between the bioprobes and target bacteria. Subsequently, ABX-GMFETs exhibited unprecedented high sensitivity with a limit of detection (LOD) of 100 CFU/mL (1-9 CFU/mL), real-time target specificity.


Asunto(s)
Técnicas Biosensibles , Grafito , Bacterias , Humanos , Límite de Detección , Reacción en Cadena de la Polimerasa
19.
Micromachines (Basel) ; 11(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331254

RESUMEN

Stress biomarkers such as hormones and neurotransmitters in bodily fluids can indicate an individual's physical and mental state, as well as influence their quality of life and health. Thus, sensitive and rapid detection of stress biomarkers (e.g., cortisol) is important for management of various diseases with harmful symptoms, including post-traumatic stress disorder and depression. Here, we describe rapid and sensitive cortisol detection based on a conducting polymer (CP) nanotube (NT) field-effect transistor (FET) platform. The synthesized polypyrrole (PPy) NT was functionalized with the cortisol antibody immunoglobulin G (IgG) for the sensitive and specific detection of cortisol hormone. The anti-cortisol IgG was covalently attached to a basal plane of PPy NT through an amide bond between the carboxyl group of PPy NT and the amino group of anti-cortisol IgG. The resulting field-effect transistor-type biosensor was utilized to evaluate various cortisol concentrations. Cortisol was sensitively measured to a detection limit of 2.7 × 10-10 M (100 pg/mL), with a dynamic range of 2.7 × 10-10 to 10-7 M; it exhibited rapid responses (<5 s). We believe that our approach can serve as an alternative to time-consuming and labor-intensive health questionnaires; it can also be used for diagnosis of underlying stress-related disorders.

20.
Sci Rep ; 10(1): 3772, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111933

RESUMEN

In this study, ultrasensitive and precise detection of a representative brain hormone, dopamine (DA), was demonstrated using functional conducting polymer nanotubes modified with aptamers. A high-performance aptasensor was composed of interdigitated microelectrodes (IMEs), carboxylated polypyrrole nanotubes (CPNTs) and DA-specific aptamers. The biosensors were constructed by sequential conjugation of CPNTs and aptamer molecules on the IMEs, and the substrate was integrated into a liquid-ion gating system surrounded by pH 7.4 buffer as an electrolyte. To confirm DA exocytosis based on aptasensors, DA sensitivity and selectivity were monitored using liquid-ion gated field-effect transistors (FETs). The minimum detection level (MDL; 100 pM) of the aptasensors was determined, and their MDL was optimized by controlling the diameter of the CPNTs owing to their different capacities for aptamer introduction. The MDL of CPNT aptasensors is sufficient for discriminating between healthy and unhealthy individuals because the total DA concentration in the blood of normal person is generally determined to be ca. 0.5 to 6.2 ng/mL (3.9 to 40.5 nM) by high-performance liquid chromatography (HPLC) (this information was obtained from a guidebook "Evidence-Based Medicine 2018 SCL " which was published by Seoul Clinical Laboratory). The CPNTs with the smaller diameters (CPNT2: ca. 120 nm) showed 100 times higher sensitivity and selectivity than the wider CPNTs (CPNT1: ca. 200 nm). Moreover, the aptasensors based on CPNTs had excellent DA discrimination in the presence of various neurotransmitters. Based on the excellent sensing properties of these aptasensors, the DA levels of exogeneous DA samples that were prepared from PC12 cells by a DA release assay were successfully measured by DA kits, and the aptasensor sensing properties were compared to those of standard DA reagents. Finally, the real-time response values to the various exogeneous DA release levels were similar to those of a standard DA aptasensor. Therefore, CPNT-based aptasensors provide efficient and rapid DA screening for neuron-mediated genetic diseases such as Parkinson's disease.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Dopamina , Exocitosis , Nanotubos/química , Animales , Dopamina/análisis , Dopamina/metabolismo , Células PC12 , Pirroles/química , Ratas , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...