Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123777, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38128330

RESUMEN

Human gallstones are the most common disorder in the biliary system, affecting up to 20 % of the adult population. The formation of gallstones is primarily due to the supersaturating of cholesterol in bile. In order to comprehend gallstone disease in detail, it is necessary to have accurate information about phase identification and molecular structure. Different types of gallstone samples were collected from the Middle East area after surgical operations including; cholesterol, pigment, and mixed gallstones. To estimate the basic information about the stone formation and the pathophysiology of cholelithiasis as well as to classify the collected human gallstones, attenuated total reflection Fourier transform Infrared spectrometry (ATR-FTIR) was used to analyze the different gallstone structures in the wavenumber range from 400 to 4000 cm-1. Calcium bilirubinate was specified by the bands at 1662 cm-1, 1626 cm-1, and 1572 cm-1, while cholesterol rings were designated by the bands at 1464, 1438, 1055, and 1022 cm-1. It can be assumed that all samples consist of mixed gallstones based on the doublets at 1375 cm-1 and 1365 cm-1. The levels of calcium bilirubin and various minerals varied among the analyzed samples, indicating the heterogeneity in their composition and suggesting potential implications for gallstone formation. Based on the quantitative phase analysis using synchrotron radiation X-ray diffraction (SR-XRD), two phases of anhydrous cholesterol as a major content and one phase of monohydrate cholesterols as trace content represent the main components of most of the gallstones. Additional phases of calcium carbonate in the form of calcite, vaterite, aragonite, and bilirubinate were also quantified. According to the outcomes of the FTIR and the SR-XRD measurements, there exists a statistical correlation between the different types of chemical constituents of the gallstones.


Asunto(s)
Cálculos Biliares , Adulto , Humanos , Cálculos Biliares/química , Espectroscopía Infrarroja por Transformada de Fourier , Estructura Molecular , Difracción de Rayos X , Sincrotrones , Bilirrubina/análisis , Colesterol/análisis
2.
Sci Rep ; 12(1): 2421, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165346

RESUMEN

Biosynthesis of silver nanoparticles (AgNPs) is emerging as a simple and eco-friendly alternative to conventional chemical synthesis methods. The role of AgNPs is expanding as antimicrobial and anticancer agents, sensors, nanoelectronic devices, and imaging contrast agents. In this study, biogenic AgNPs were synthesized using extracts of different marine algae species, including Ulva rigida (green alga), Cystoseira myrica (brown alga), and Gracilaria foliifera (red alga), as reducing and capping agents. The Physiochemical properties, cytotoxicity, anticancer and antimicrobial activities of the biosynthesized AgNPs were assessed. Surface plasmonic bands of the biosynthesized AgNPs capped with U. rigida, C. myrica, and G. foliifera extracts were visually observed to determine a colour change, and their peaks were observed at 424 nm, 409 nm, and 415 nm, respectively, by UV-Vis spectroscopy; transmission electron microscopy (TEM) indicated an almost spherical shape of AgNPs with nanoscale sizes of 12 nm, 17 nm, and 24 nm, respectively. Fourier transform-infrared (FTIR) spectroscopy analysis suggested that different molecules attached to AgNPs through OH, C=O, and amide groups. The major constituents of the aqueous algal extracts included, terpenoids, polyphenols, sulfonates, polysaccharides, fatty acids, chlorophylls, amide proteins, flavonoids, carotenoids, aliphatic fluoro compounds, volatile compounds, alkalines, pyruvic acid and agar groups. The cytotoxicity and anticancer activities of the biosynthesized AgNPs were assessed using Artemia salina nauplii, normal skin cell lines (HFb-4), and breast cancer cell lines (MCF-7 cell line). The lethality was found to be directly proportional to the AgNP concentration. The IC50 values of C. myrica and G. foliifera AgNPs against A. saline nauplii were 5 and 10 µg ml-1 after 4 h and 16 h, respectively, whereas U. rigida AgNPs did not exhibit cytotoxic effects. Anticancer activity of the biosynthesized AgNPs was dose dependent. The IC50 values of the biosynthesized AgNPs were 13, 13, and 43 µg ml-1 for U. rigida, C. myrica, and G. foliifera, respectively. U. rigida AgNPs particularly exhibited potent anticancer activity (92.62%) against a human breast adenocarcinoma cell line (MCF-7) with high selectivity compared the normal cells (IC50 = 13 µg/ml, SI = 3.2), followed by C. myrica AgNPs (IC50 = 13 µg/ml, SI = 3.07). Furthermore, the biosynthesized AgNPs exhibited strong antifungal activity against dermatophyte pathogenic moulds and mild antibacterial activity against the food borne pathogen bacteria. The highest antimicrobial activity was recorded for the U. rigida AgNPs, followed by those capped with C. myrica and G. foliifera extracts, respectively. AgNPs capped with the U. rigida extract exhibited the highest antimicrobial activity against Trichophyton mantigrophytes (40 mm), followed by Trichosporon cataneum (30 mm) and E. coli (19 mm), with minimal lethal concentration of 32 and 64 µg ml-1 respectively. The study finally revealed that extracts of marine algal species, particularly U. rigida extracts, could be effectively used as reducing agents for the green synthesis of AgNPs. These AgNPs are considered efficient alternative antidermatophytes for skin infections and anticancer agents against the MCF-7 cell line.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Chlorophyta/química , Nanopartículas del Metal/toxicidad , Phaeophyceae/química , Rhodophyta/química , Plata/farmacología , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Artemia , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Humanos , Células MCF-7 , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
Biol Trace Elem Res ; 199(8): 2858-2868, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33037980

RESUMEN

Intact and non-intact urinary stones richening with calcium oxalate were collected and characterized. The elemental analysis, phase quantifications, and function groups were determined by different spectroscopic techniques, namely: energy-dispersive X-ray fluorescence (EDXRF), the synchrotron radiation X-ray diffraction (SR-XRD), and attenuated total reflection Fourier transform infrared (ATR-FTIR). The quantitative analysis of twenty elements was demonstrated in the most of the urinary stones and these elements are: Ca, Na, P, S, Mg, Cl, Zn, K, Ti, Sr, Ni, Co, Fe, Cu, Cd, Br, Pb, Se, I, and Mn. Using the Rietveld method, the diffraction phase quantification was illustrated. The main found phases are calcium oxalate (monohydrate and dihydrate) and hydroxyapatite phase. The FTIR outcomes reveal that the functional groups of O-H, N-H, C=O, and C-O indicate to the calcium oxalate whereas the P-O and O-P-O, and PO43- groups indicate to the calcium phosphates in the hydroxyapatite. A considerable correlations between the oxalate urinary stones and the group of elements were found. These elements are Zn, Sr, Ni, and Fe. These correlations could lead to new therapeutic approaches. Furthermore, the elements of sodium and chlorine have no vital role in the formation of calcium oxalate urinary stones.


Asunto(s)
Oxalato de Calcio , Cálculos Urinarios , Humanos , Oxalatos , Análisis Espectral , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...