Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405691

RESUMEN

Congenital myasthenic syndromes (CMS) are a group of inherited disorders characterised by defective neuromuscular transmission and fatigable muscle weakness. Mutations in DOK7 , a gene encoding a post-synaptic protein crucial in the formation and stabilisation of the neuromuscular junction (NMJ), rank among the leading three prevalent causes of CMS in diverse populations globally. The majority of DOK7 CMS patients experience varying degrees of disability despite receiving optimised treatment, necessitating the development of improved therapeutic approaches. Here we executed a dose escalation pre-clinical trial using a DOK7-CMS mouse model to assess the efficacy of Amp-101, an innovative AAV gene replacement therapy. Amp-101 is based on AAVrh74 and contains human DOK7 cDNA under the control of a muscle-restricted promoter. We show that at doses 6x10 13 vg/kg and 1x10 14 vg/kg, Amp-101 generated enlarged NMJs and rescued the very severe phenotype of the model. Treated mice became at least as strong as WT littermates and the diaphragm and tibialis anterior muscles displayed robust expression of DOK7. This data suggests that Amp-101 is a promising candidate to move forward to clinic trials.

2.
Cureus ; 15(10): e47527, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38022294

RESUMEN

BACKGROUND: Clinical virtual simulators are promising new technologies that might facilitate teaching clinical skills. OBJECTIVE: This study aimed to assess whether a virtual reality simulator might facilitate learning and improve adherence to current clinical guidelines. METHODOLOGY: A double-masked randomised trial was undertaken among fourth-year medical students at Universidad Andres Bello, Chile. Participants were randomised to a clinical virtual simulator (Body Interact®, Body Interact Inc., Austin, TX) or a small-group discussion session on the management of myocardial infarction. Main outcomes included performance in an objective structured clinical examination (OSCE) and adherence to clinical recommendations. Analyses were undertaken under the intention to treat principle by an independent statistician. RESULTS: Fifty students volunteered to participate. Most were female (30 students, 58.8%) and had a mean age of 23.0±2.7 years. Thirty-two participants (62.8%) had used virtual reality platforms before. Students allocated to the simulator showed better OSCE scores (mean difference: 2.8 points; 95% confidence interval (CI): -3.2 to +8.7 points, p=0.14) and were faster to implement diagnostic and therapeutic interventions, but not in a statistically significant way. DISCUSSION: Academic performance was slightly improved by the use the simulator, although the overall effect was smaller than expected. CONCLUSION:  This study examined the influence of a clinical virtual simulator on the academic performance and guideline adherence of undergraduate medical students, with small group discussions as a point of comparison. The findings revealed that there were no statistically significant distinctions between the two methods, potentially attributed to the selection of the comparator and the relatively brief intervention period.

3.
Environ Geochem Health ; 45(8): 5713-5726, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35727388

RESUMEN

The removal of copper ions, from synthetic solutions, using walnut shell and olive pomace waste as biosorbents was studied. Synthetic copper solutions were used, and the contact time, initial pH, biosorbent dose, and initial concentration of copper ions were evaluated. The used particle size of both biosorbents was inferior to 600 µm. In the elimination of copper ions, the walnut shell reached 88% (30 min), and the olive pomace 86.5% (40 min). The maximum removal of copper ions was at pH 5 with both biosorbents. The elimination of copper ions was constant with increasing doses of bio-sorbent; however, a decrease close to 90% in the biosorption capacity was determined, when the dose of biosorbent increased from 1 to 10 g/L. The effect of the biosorption capacity increased proportionally with the initial concentration of copper ions; achieving biosorption of 8.3 and 12.9 mg of Cu+2/g of biosorbent, with walnut shell and olive pomace, respectively. Both biosorbent allowed copper ions removal close to 90%; however, to the olive pomace was not necessary a size reduction and had a higher copper ions biosorption capacity than the walnut shell.


RESUMEN: Se estudió la remoción de iones cobre desde solución sintética, usando cáscara de nuez y orujo de oliva como biosorbentes; se evaluó el tiempo de contacto, pH inicial, dosis de biosorbente y concentración inicial de iones cobre. El tamaño de partícula usado de ambos biosorbentes fue inferior a 600 µm. En la eliminación de iones cobre, la cáscara de nuez alcanzó 88 % (30 min) y el orujo de oliva 86,5 % (40 min). La máxima remoción de iones cobre fue a pH 5 con ambos biosorbentes. La eliminación de iones cobre fue constante con dosis crecientes de biosorbente; pero, se determinó una disminución cercana al 90 % en la capacidad de biosorción, cuando la dosis de biosorbente incrementó de 1 a 10 g/L. El efecto de la capacidad de biosorción aumentó proporcionalmente con la concentración inicial de iones cobre; obteniéndose biosorción de 8,3 y 12,9 mg de Cu+2/g de biosorbente, con cáscara de nuez y orujo de oliva, respectivamente. Ambos biosorbentes permitieron una remoción de iones cobre cercana al 90%; sin embargo, el orujo de oliva no necesitó reducción de tamaño y tuvo mejor capacidad de biosorción de iones cobre que la cáscara de nuez.


Asunto(s)
Juglans , Olea , Contaminantes Químicos del Agua , Cobre/análisis , Concentración de Iones de Hidrógeno , Iones , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis
4.
Sci Rep ; 11(1): 20504, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654850

RESUMEN

Loss of genetic diversity reduces the ability of species to evolve and respond to environmental change. Araucaria araucana is an emblematic conifer species from southern South America, with important ethnic value for the Mapuche people (Pehuenche); the Chilean Government has catalogued its conservation status as vulnerable. Climatic fluctuations were potentially a major impact in the genetic variation within many tree species. In this context, the restricted geographic distribution of A. araucana in Chile appears to be a consequence of the Last Glacial Maximum (LGM). During the past two centuries, strong human intervention has also affected the geographical distribution and population sizes of A. araucana. Reduction of population size may cause loss of genetic diversity, which could affect frequency of adaptive loci. The aims of this study were to know the existence of potential loci under selection and populations with genetic, demographic disequilibrium in the Chilean distribution of A. araucana. Based on 268 polymorphic AFLP loci, we have investigated potential loci under selection and genetic, demographic disequilibrium within seven Chilean populations of Araucaria araucana. Correlation of 41 outlier loci with the environmental variables of precipitation and temperature reveals signatures of selection, whereas 227 neutral loci provide estimates of demographic equilibrium and genetic population structure. Three populations are recommended as priorities for conservation.

5.
Front Plant Sci ; 11: 594272, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224173

RESUMEN

Dendroseris D. Don comprises 11 species endemic to the Juan Fernández islands in Chile. They demonstrate spectacular and unusual growth forms of rosette trees with extremely variable morphology and occupy wide ecological ranges on the islands. These unique plants are now highly threatened with extinction with very small population sizes, typically consisting of 10 or fewer individuals in wild. Despite morphological and ecological divergence among species of Dendroseris, their monophyly has been supported in previous studies, but with little resolution among subgeneric groups. We assembled seven complete plastome sequences from seven species of Dendroseris, including representatives from three subgenera, and carried out comparative phylogenomic analyses. The plastomes are highly conserved in gene content and order, with size ranging from 152,199 to 152,619 bp and containing 130 genes (87 coding genes, 6 rRNA genes, and 37 tRNA genes). Plastid phylogenomic analyses based on both the complete plastome sequences and 81 concatenated coding genes only show Dendroseris nested within Sonchus sensu lato, and also that inter-subgeneric relationships are fully resolved. Subg. Phoenicoseris is resolved as sister to the remaining species of the genus and a sister relationship between the two subgenera Dendroseris and Rea. Ten mutation hotspots from LSC and SSC regions and variable SSRs are identified as potential chloroplast markers for future phylogenetic and phylogeographic studies of Sonchus and related groups.

6.
J Plant Res ; 132(2): 295, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30805736

RESUMEN

The article Factors driving adaptive radiation in plants of oceanic islands: a case study from the Juan Fernández Archipelago, written by Koji Takayama, Daniel J. Crawford, Patricio López­Sepúlveda, Josef Greimler, Tod F. Stuessy was originally published electronically on the publisher's internet portal (currently SpringerLink) on 13 March 2018 without open access.

7.
Front Physiol ; 9: 1336, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356878

RESUMEN

The transcriptional coactivators peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and PGC-1ß are positive regulators of skeletal muscle mass and energy metabolism; however, whether they influence muscle growth and metabolic adaptations via increased protein synthesis is not clear. This study revealed PGC-1α or PGC-1ß overexpression in C2C12 myotubes increased protein synthesis and myotube diameter under basal conditions and attenuated the loss in protein synthesis following the treatment with the catabolic agent, dexamethasone. To investigate whether PGC-1α or PGC-1ß signal through the Akt/mTOR pathway to increase protein synthesis, treatment with the PI3K and mTOR inhibitors, LY294002 and rapamycin, respectively, was undertaken but found unable to block PGC-1α or PGC-1ß's promotion of protein synthesis. Furthermore, PGC-1α and PGC-1ß decreased phosphorylation of Akt and the Akt/mTOR substrate, p70S6K. In contrast to Akt/mTOR inhibition, the suppression of ERRα, a major effector of PGC-1α and PGC-1ß activity, attenuated the increase in protein synthesis and myotube diameter in the presence of PGC-1α or PGC-1ß overexpression. To characterize further the biological processes occurring, gene set enrichment analysis of genes commonly regulated by both PGC-1α and PGC-1ß was performed following a microarray screen. Genes were found enriched in metabolic and mitochondrial oxidative processes, in addition to protein translation and muscle development categories. This suggests concurrent responses involving both increased metabolism and myotube protein synthesis. Finally, based on their known function or unbiased identification through statistical selection, two sets of genes were investigated in a human exercise model of stimulated protein synthesis to characterize further the genes influenced by PGC-1α and PGC-1ß during physiological adaptive changes in skeletal muscle.

8.
Ecol Evol ; 8(5): 2527-2533, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29531673

RESUMEN

Oceanic islands are vulnerable ecosystems and their flora has been under pressure since the arrival of the first humans. Human activities and both deliberately and inadvertently introduced biota have had and continue to have a severe impact on island endemic plants. The number of alien plants has increased nearly linearly on many islands, perhaps resulting in extinction-based saturation of island floras. Here, we provide evidence for such a scenario in Alejandro Selkirk, Robinson Crusoe Islands (Archipelago Juan Fernández, Chile). We compared species richness and species composition of historical vegetation samples from 1917 with recent ones from 2011. Changes in species' relative occurrence frequency were related to their taxonomic affiliation, dispersal mode, distribution status, and humidity and temperature preferences. While total species richness of vascular plants remained relatively similar, species composition changed significantly. Plants endemic to the Robinson Crusoe Islands declined, exotic species increased substantially within the period of ca. 100 years. Further, the relative occurrence frequency of plants with preferences for very warm and humid climate decreased, while the opposite was found for plants preferring drier and colder environments. Potential drivers responsible for this dramatic shift in the vegetation within only one century might have been the large goat population affecting especially small populations of endemic plants and climatic changes. Taking into account a substantial extinction debt, we expect further shifts in the vegetation of this small oceanic island toward alien plants. This would have significant negative consequences on global biodiversity, considering that island floras contribute substantially to global plant species richness due to their high proportion of endemics.

9.
J Plant Res ; 131(3): 469-485, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29536201

RESUMEN

Adaptive radiation is a common evolutionary phenomenon in oceanic islands. From one successful immigrant population, dispersal into different island environments and directional selection can rapidly yield a series of morphologically distinct species, each adapted to its own particular environment. Not all island immigrants, however, follow this evolutionary pathway. Others successfully arrive and establish viable populations, but they remain in the same ecological zone and only slowly diverge over millions of years. This transformational speciation, or anagenesis, is also common in oceanic archipelagos. The critical question is why do some groups radiate adaptively and others not? The Juan Fernández Islands contain 105 endemic taxa of angiosperms, 49% of which have originated by adaptive radiation (cladogenesis) and 51% by anagenesis, hence providing an opportunity to examine characteristics of taxa that have undergone both types of speciation in the same general island environment. Life form, dispersal mode, and total number of species in progenitors (genera) of endemic angiosperms in the archipelago were investigated from literature sources and compared with modes of speciation (cladogenesis vs. anagenesis). It is suggested that immigrants tending to undergo adaptive radiation are herbaceous perennial herbs, with leaky self-incompatible breeding systems, good intra-island dispersal capabilities, and flexible structural and physiological systems. Perhaps more importantly, the progenitors of adaptively radiated groups in islands are those that have already been successful in adaptations to different environments in source areas, and which have also undergone eco-geographic speciation. Evolutionary success via adaptive radiation in oceanic islands, therefore, is less a novel feature of island lineages but rather a continuation of tendency for successful adaptive speciation in lineages of continental source regions.


Asunto(s)
Adaptación Fisiológica , Especiación Genética , Magnoliopsida/fisiología , Evolución Biológica , Chile , Ecología , Genética de Población , Geografía , Islas , Magnoliopsida/genética
10.
Sci Transl Med ; 8(348): 348ra98, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27440729

RESUMEN

Patients with advanced cancer often succumb to complications arising from striated muscle wasting associated with cachexia. Excessive activation of the type IIB activin receptor (ActRIIB) is considered an important mechanism underlying this wasting, where circulating procachectic factors bind ActRIIB and ultimately lead to the phosphorylation of SMAD2/3. Therapeutics that antagonize the binding of ActRIIB ligands are in clinical development, but concerns exist about achieving efficacy without off-target effects. To protect striated muscle from harmful ActRIIB signaling, and to reduce the risk of off-target effects, we developed an intervention using recombinant adeno-associated viral vectors (rAAV vectors) that increase expression of Smad7 in skeletal and cardiac muscles. SMAD7 acts as an intracellular negative regulator that prevents SMAD2/3 activation and promotes degradation of ActRIIB complexes. In mouse models of cachexia, rAAV:Smad7 prevented wasting of skeletal muscles and the heart independent of tumor burden and serum levels of procachectic ligands. Mechanistically, rAAV:Smad7 administration abolished SMAD2/3 signaling downstream of ActRIIB and inhibited expression of the atrophy-related ubiquitin ligases MuRF1 and MAFbx. These findings identify muscle-directed Smad7 gene delivery as a potential approach for preventing muscle wasting under conditions where excessive ActRIIB signaling occurs, such as cancer cachexia.


Asunto(s)
Atrofia Muscular/metabolismo , Atrofia Muscular/terapia , Neoplasias/fisiopatología , Proteína smad7/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Western Blotting , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Miocardio/metabolismo , Miocardio/patología , Neoplasias/complicaciones , Neoplasias/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Proteína smad7/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Sci Rep ; 5: 17535, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26657343

RESUMEN

Follistatin is an inhibitor of TGF-ß superfamily ligands that repress skeletal muscle growth and promote muscle wasting. Accordingly, follistatin has emerged as a potential therapeutic to ameliorate the deleterious effects of muscle atrophy. However, it remains unclear whether the anabolic effects of follistatin are conserved across different modes of non-degenerative muscle wasting. In this study, the delivery of a recombinant adeno-associated viral vector expressing follistatin (rAAV:Fst) to the hind-limb musculature of mice two weeks prior to denervation or tenotomy promoted muscle hypertrophy that was sufficient to preserve muscle mass comparable to that of untreated sham-operated muscles. However, administration of rAAV:Fst to muscles at the time of denervation or tenotomy did not prevent subsequent muscle wasting. Administration of rAAV:Fst to innervated or denervated muscles increased protein synthesis, but markedly reduced protein degradation only in innervated muscles. Phosphorylation of the signalling proteins mTOR and S6RP, which are associated with protein synthesis, was increased in innervated muscles administered rAAV:Fst, but not in treated denervated muscles. These results demonstrate that the anabolic effects of follistatin are influenced by the interaction between muscle fibres and motor nerves. These findings have important implications for understanding the potential efficacy of follistatin-based therapies for non-degenerative muscle wasting.


Asunto(s)
Desnervación/efectos adversos , Folistatina/genética , Terapia Genética , Atrofia Muscular/etiología , Atrofia Muscular/patología , Tenotomía/efectos adversos , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Folistatina/metabolismo , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Hipertrofia , Ratones , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/terapia , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Transducción Genética
12.
AoB Plants ; 72015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26311732

RESUMEN

Adaptive radiation is a common mode of speciation among plants endemic to oceanic islands. This pattern is one of cladogenesis, or splitting of the founder population, into diverse lineages in divergent habitats. In contrast, endemic species have also evolved primarily by simple transformations from progenitors in source regions. This is anagenesis, whereby the founding population changes genetically and morphologically over time primarily through mutation and recombination. Gene flow among populations is maintained in a homogeneous environment with no splitting events. Genetic consequences of these modes of speciation have been examined in the Juan Fernández Archipelago, which contains two principal islands of differing geological ages. This article summarizes population genetic results (nearly 4000 analyses) from examination of 15 endemic species, involving 1716 and 1870 individuals in 162 and 163 populations (with amplified fragment length polymorphisms and simple sequence repeats, respectively) in the following genera: Drimys (Winteraceae), Myrceugenia (Myrtaceae), Rhaphithamnus (Verbenaceae), Robinsonia (Asteraceae, Senecioneae) and Erigeron (Asteraceae, Astereae). The results indicate that species originating anagenetically show high levels of genetic variation within the island population and no geographic genetic partitioning. This contrasts with cladogenetic species that show less genetic diversity within and among populations. Species that have been derived anagenetically on the younger island (1-2 Ma) contain less genetic variation than those that have anagenetically speciated on the older island (4 Ma). Genetic distinctness among cladogenetically derived species on the older island is greater than among similarly derived species on the younger island. An important point is that the total genetic variation within each genus analysed is comparable, regardless of whether adaptive divergence occurs.

13.
Cell Metab ; 21(5): 718-30, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25955207

RESUMEN

Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis.


Asunto(s)
Citidina Difosfato/análogos & derivados , Diglicéridos/metabolismo , Etanolaminas/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Animales , Citidina Difosfato/metabolismo , Glucosa/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo
14.
J Plant Res ; 128(1): 73-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25292282

RESUMEN

A common mode of speciation in oceanic islands is by anagenesis, wherein an immigrant arrives and through time transforms by mutation, recombination, and drift into a morphologically and genetically distinct species, with the new species accumulating a high level of genetic diversity. We investigate speciation in Drimys confertifolia, endemic to the two major islands of the Juan Fernández Archipelago, Chile, to determine genetic consequences of anagenesis, to examine relationships among populations of D. confertifolia and the continental species D. winteri and D. andina, and to test probable migration routes between the major islands. Population genetic analyses were conducted using AFLPs and nuclear microsatellites of 421 individuals from 42 populations from the Juan Fernández islands and the continent. Drimys confertifolia shows a wide genetic variation within populations on both islands, and values of genetic diversity within populations are similar to those found within populations of the continental progenitor. The genetic results are compatible with the hypothesis of high levels of genetic variation accumulating within anagenetically derived species in oceanic islands, and with the concept of little or no geographical partitioning of this variation over the landscape. Analysis of the probability of migration within the archipelago confirms colonization from the older island, Robinson Crusoe, to the younger island Alejandro Selkirk.


Asunto(s)
Drimys/genética , Especiación Genética , Islas , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Chile , Variación Genética , Genética de Población , Geografía , Repeticiones de Microsatélite/genética , Modelos Biológicos , Filogenia
15.
New Phytol ; 205(1): 415-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25209139

RESUMEN

This study analyses and compares the genetic signatures of anagenetic and cladogenetic speciation in six species of the genus Robinsonia (Asteraceae, Senecioneae), endemic to the Juan Fernández Islands, Chile. Population genetic structure was analyzed by amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) markers from 286 and 320 individuals, respectively, in 28 populations. Each species is genetically distinct. Previous hypotheses of classification among these species into subgenera and sections, via morphological, phytochemical, isozymic and internal transcribed spacer (ITS) data, have been confirmed, except that R. saxatilis appears to be related to R. gayana rather than R. evenia. Analysis of phylogenetic results and biogeographic context suggests that five of these species have originated by cladogenesis and adaptive radiation on the older Robinson Crusoe Island. The sixth species, R. masafuerae, restricted to the younger Alejandro Selkirk Island, is closely related to and an anagenetic derivative of R. evenia from Robinson Crusoe. Microsatellite and AFLP data reveal considerable genetic variation among the cladogenetically derived species of Robinsonia, but within each the genetic variation is lower, highlighting presumptive genetic isolation and rapid radiation. The anagenetically derived R. masafuerae harbors a level of genetic variation similar to that of its progenitor, R. evenia. This is the first direct comparison of the genetic consequences of anagenetic and cladogenetic speciation in plants of an oceanic archipelago.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Asteraceae/genética , Especiación Genética , Repeticiones de Microsatélite/genética , Chile , Variación Genética , Geografía , Filogenia , Especificidad de la Especie
16.
Clin Exp Pharmacol Physiol ; 42(1): 1-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25311629

RESUMEN

Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts. Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health. With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development. The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader.


Asunto(s)
Composición Corporal/efectos de los fármacos , Índice de Masa Corporal , Sistemas de Liberación de Medicamentos/métodos , Delgadez/tratamiento farmacológico , Andrógenos/administración & dosificación , Animales , Composición Corporal/fisiología , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Delgadez/diagnóstico , Delgadez/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Síndrome Debilitante/diagnóstico , Síndrome Debilitante/tratamiento farmacológico , Síndrome Debilitante/metabolismo
17.
Bot J Linn Soc ; 174(3): 276-288, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26074627

RESUMEN

Oceanic islands offer special opportunities for understanding the patterns and processes of evolution. The availability of molecular markers in recent decades has enhanced these opportunities, facilitating the use of population genetics to reveal divergence and speciation in island systems. A common pattern seen in taxa on oceanic islands is a decreased level of genetic variation within and among populations, and the founder effect has often been invoked to explain this observation. Founder effects have a major impact on immigrant populations, but, over millions of years, the original genetic signature will normally be erased as a result of mutation, recombination, drift and selection. Therefore, the types and degrees of genetic modifications that occur must often be caused by other factors, which should be considered when explaining the patterns of genetic variation. The age of the island is extremely important because oceanic islands subside on their submarine plates over time. Erosion caused by wind, rain and wave action combine to grind down soft volcanic substrates. These geomorphological events can have a dramatic impact on population number and size, and hence levels of genetic diversity. The mode of speciation is also of significance. With anagenesis, genetic variation accumulates through time, whereas, with cladogenenesis, the gene pool splits into populations of adaptively radiating species. Breeding systems, population sizes and generation times are also important, as is hybridization between closely related taxa. Human disturbance has affected plant population number and size through the harvesting of forests and the introduction of invasive plants and animals. Therefore, the explanation of the observed levels of genetic variation in species of oceanic islands requires the consideration of many interconnected physical, biological and anthropomorphic factors.

18.
PLoS One ; 8(9): e73589, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24023888

RESUMEN

microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype--an important consideration in relation to the development of therapeutics designed to manipulate microRNA activity in musculature.


Asunto(s)
Histona Desacetilasas/genética , MicroARNs/genética , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/patología , Animales , Línea Celular , Dependovirus/genética , Vectores Genéticos/genética , Hipertrofia/genética , Ratones , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/fisiología , Atrofia Muscular/genética
19.
Conserv Genet Resour ; 5(1): 63-67, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23450224

RESUMEN

Ten microsatellite markers were developed for Robinsonia (Asteraceae), a genus endemic to the Juan Fernández Archipelago, Chile. Polymorphisms of these markers were tested using one population each of R. evenia, R. gayana, and R. gracilis. The number of alleles for these markers ranged from 2 to 17 per locus, and expected heterozygosity ranged from 0 to 0.847 by population. A significant deviation from Hardy-Weinberg equilibrium was observed in zero to two markers in each population, and no significant linkage disequilibrium between markers was detected. The markers reported here would be useful for evolutionary studies and conservation strategies in Robinsonia.

20.
Am J Bot ; 100(4): 722-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23510759

RESUMEN

PREMISE OF THE STUDY: Anagenesis (or phyletic evolution) is one mode of speciation that occurs in the evolution of plants on oceanic islands. Of two endemic species on the Juan Fernández Islands (Chile), Myrceugenia fernandeziana and M. schulzei (Myrtaceae), believed to have originated anagenetically from different continental progenitors, the first is endemic to Robinson Crusoe Island and has no clear tie to continental relatives; the last is endemic to the younger island, Alejandro Selkirk Island, and has close affinity to M. colchaguensis in mainland Chile. METHODS: Using AFLPs and six nuclear microsatellites from 381 individuals representing 33 populations, we determined patterns of genetic variation within and among populations on both islands and between those of the islands and mainland. KEY RESULTS: Considerable genetic variation was found within populations on both islands. The level of gene diversity within M. schulzei was equivalent to that of its close continental relative M. colchaguensis. Genetic diversity was not partitioned geographically in M. fernandeziana and was weakly so and nonsignificantly in M. schulzei. CONCLUSIONS: The high genetic variation in both taxa is most likely due to anagenetic speciation. Subsidence of the older island Robinson Crusoe, landscape erosion, and restructuring of communities have severely reduced the overall island population to a single panmictic system. On the younger and less modified Alejandro Selkirk Island, slightly stronger patterns of genetic divergence are seen in M. schulzei. Because both species are genetically diverse and number in the thousands of individuals, neither is presently endangered in the archipelago.


Asunto(s)
Variación Genética , Myrtaceae/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Chile , Repeticiones de Microsatélite , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...