Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Mycol ; 60(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36002024

RESUMEN

Invasive fungal infections are increasingly common and carry high morbidity and mortality, yet fungal diagnostics lag behind bacterial diagnostics in rapidly identifying the causal pathogen. We previously devised a fluorescent hybridization-based assay to identify bacteria within hours directly from blood culture bottles without subculture, called phylogeny-informed rRNA-based strain identification (Phirst-ID). Here, we adapt this approach to unambiguously identify 11 common pathogenic Candida species, including C. auris, with 100% accuracy from laboratory culture (33 of 33 strains in a reference panel, plus 33 of 33 additional isolates tested in a validation panel). In a pilot study on 62 consecutive positive clinical blood cultures from two hospitals that showed yeast on Gram stain, Candida Phirst-ID matched the clinical laboratory result for 58 of 59 specimens represented in the 11-species reference panel, without misclassifying the 3 off-panel species. It also detected mixed Candida species in 2 of these 62 specimens, including the one discordant classification, that were not identified by standard clinical microbiology workflows; in each case the presence of both species was validated by both clinical and experimental data. Finally, in three specimens that grew both bacteria and yeast, we paired our prior bacterial probeset with this new Candida probeset to detect both pathogen types using Phirst-ID. This simple, robust assay can provide accurate Candida identification within hours directly from blood culture bottles, and the conceptual approach holds promise for pan-microbial identification in a single workflow. LAY SUMMARY: Candida bloodstream infections cause considerable morbidity and mortality, yet slow diagnostics delay recognition, worsening patient outcomes. We develop and validate a novel molecular approach to accurately identify Candida species directly from blood culture one day faster than standard workflows.


Asunto(s)
Candida , Candidiasis , Animales , Cultivo de Sangre/veterinaria , Candidiasis/microbiología , Candidiasis/veterinaria , Proyectos Piloto , Saccharomyces cerevisiae
2.
Curr Biol ; 32(5): 1115-1130.e6, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35134329

RESUMEN

Opportunistic infections by environmental fungi are a growing clinical problem, driven by an increasing population of people with immunocompromising conditions. Spores of the Mucorales order are ubiquitous in the environment but can also cause acute invasive infections in humans through germination and evasion of the mammalian host immune system. How they achieve this and the evolutionary drivers underlying the acquisition of virulence mechanisms are poorly understood. Here, we show that a clinical isolate of Rhizopus microsporus contains a Ralstonia pickettii bacterial endosymbiont required for virulence in both zebrafish and mice and that this endosymbiosis enables the secretion of factors that potently suppress growth of the soil amoeba Dictyostelium discoideum, as well as their ability to engulf and kill other microbes. As amoebas are natural environmental predators of both bacteria and fungi, we propose that this tri-kingdom interaction contributes to establishing endosymbiosis and the acquisition of anti-phagocyte activity. Importantly, we show that this activity also protects fungal spores from phagocytosis and clearance by human macrophages, and endosymbiont removal renders the fungal spores avirulent in vivo. Together, these findings describe a new role for a bacterial endosymbiont in Rhizopus microsporus pathogenesis in animals and suggest a mechanism of virulence acquisition through environmental interactions with amoebas.


Asunto(s)
Amoeba , Dictyostelium , Animales , Bacterias , Hongos , Humanos , Mamíferos , Ratones , Fagocitos , Rhizopus , Virulencia , Pez Cebra
3.
mSphere ; 3(5)2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30258038

RESUMEN

Rhizopus delemar is an invasive fungal pathogen responsible for the frequently fatal disease mucormycosis. Germination, a crucial mechanism by which infectious spores of Rhizopus delemar cause disease, is a key developmental process that transforms the dormant spore state into a vegetative one. The molecular mechanisms that underpin this transformation may be key to controlling mucormycosis; however, the regulation of germination remains poorly understood. This study describes the phenotypic and transcriptional changes that take place over the course of germination. This process is characterized by four distinct stages: dormancy, isotropic swelling, germ tube emergence, and hyphal growth. Dormant spores are shown to be transcriptionally unique, expressing a subset of transcripts absent in later developmental stages. A large shift in the expression profile is prompted by the initiation of germination, with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing to be important for this transition. A period of transcriptional consistency can be seen throughout isotropic swelling, before the transcriptional landscape shifts again at the onset of hyphal growth. This study provides a greater understanding of the regulation of germination and highlights processes involved in transforming Rhizopus delemar from a single-cellular to multicellular organism.IMPORTANCE Germination is key to the growth of many organisms, including fungal spores. Mucormycete spores exist abundantly within the environment and germinate to form hyphae. These spores are capable of infecting immunocompromised individuals, causing the disease mucormycosis. Germination from spore to hyphae within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This study advances our understanding of how spore germination occurs in the mucormycetes, identifying processes we may be able to inhibit to help prevent or treat mucormycosis.


Asunto(s)
Hifa/crecimiento & desarrollo , Rhizopus/patogenicidad , Esporas Fúngicas/crecimiento & desarrollo , Expresión Génica , Genes Fúngicos , Hifa/genética , Mucormicosis/microbiología , ARN de Hongos/análisis , Rhizopus/crecimiento & desarrollo , Esporas Fúngicas/genética , Virulencia
4.
Adv Appl Microbiol ; 102: 117-157, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29680124

RESUMEN

Fungi, algae, plants, protozoa, and bacteria are all known to form spores, especially hardy and ubiquitous propagation structures that are also often the infectious agents of diseases. Spores can survive for thousands of years, frozen in the permafrost (Kochkina et al., 2012), with the oldest viable spores extracted after 250 million years from salt crystals (Vreeland, Rosenzweig, & Powers, 2000). Their resistance to high levels of UV, desiccation, pressure, heat, and cold enables the survival of spores in the harshest conditions (Setlow, 2016). For example, Bacillus subtilis spores can survive and remain viable after experiencing conditions similar to those on Mars (Horneck et al., 2012). Spores are disseminated through environmental factors. Wind, water, or animal carriage allow spores to be spread ubiquitously throughout the environment. Spores will break dormancy and begin to germinate once exposed to favorable conditions. Germination is the mechanism that converts the spore from a dormant biological organism to one that grows vegetatively and is capable of either sexual or asexual reproduction. The process of germination has been well studied in plants, moss, bacteria, and many fungi (Hohe & Reski, 2005; Huang & Hull, 2017; Vesty et al., 2016). Unfortunately, information on the complex signaling involved in the regulation of germination, particularly in fungi remains lacking. This chapter will discuss germination of fungal spores covering our current understanding of the regulation, signaling, outcomes, and implications of germination of pathogenic fungal spores. Owing to the morphological similarities between the spore-hyphal and yeast-hyphal transition and their relevance for disease progression, relevant aspects of fungal dimorphism will be discussed alongside spore germination in this chapter.


Asunto(s)
Adaptación Fisiológica , Exposición a Riesgos Ambientales , Hongos/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica , Transducción de Señal , Esporas Fúngicas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...