Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(11): 7119-7130, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35475336

RESUMEN

Exposure to PM2.5 is associated with hundreds of premature mortalities every year in New York City (NYC). Current air quality and health impact assessment tools provide county-wide estimates but are inadequate for assessing health benefits at neighborhood scales, especially for evaluating policy options related to energy efficiency or climate goals. We developed a new ZIP Code-Level Air Pollution Policy Assessment (ZAPPA) tool for NYC by integrating two reduced form models─Community Air Quality Tools (C-TOOLS) and the Co-Benefits Risk Assessment Health Impacts Screening and Mapping Tool (COBRA)─that propagate emissions changes to estimate air pollution exposures and health benefits. ZAPPA leverages custom higher resolution inputs for emissions, health incidences, and population. It, then, enables rapid policy evaluation with localized ZIP code tabulation area (ZCTA)-level analysis of potential health and monetary benefits stemming from air quality management decisions. We evaluated the modeled 2016 PM2.5 values against observed values at EPA and NYCCAS monitors, finding good model performance (FAC2, 1; NMSE, 0.05). We, then, applied ZAPPA to assess PM2.5 reduction-related health benefits from five illustrative policy scenarios in NYC focused on (1) commercial cooking, (2) residential and commercial building fuel regulations, (3) fleet electrification, (4) congestion pricing in Manhattan, and (5) these four combined as a "citywide sustainable policy implementation" scenario. The citywide scenario estimates an average reduction in PM2.5 of 0.9 µg/m3. This change translates to avoiding 210-475 deaths, 340 asthma emergency department visits, and monetized health benefits worth $2B to $5B annually, with significant variation across NYC's 192 ZCTAs. ZCTA-level assessments can help prioritize interventions in neighborhoods that would see the most health benefits from air pollution reduction. ZAPPA can provide quantitative insights on health and monetary benefits for future sustainability policy development in NYC.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Mortalidad Prematura , Ciudad de Nueva York/epidemiología , Material Particulado/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-31540404

RESUMEN

Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) and ozone (O3) often use outdoor concentrations as exposure surrogates. Failure to account for the variability of the indoor infiltration of ambient PM2.5 and O3, and time indoors, can induce exposure errors. We developed an exposure model called TracMyAir, which is an iPhone application ("app") that determines seven tiers of individual-level exposure metrics in real-time for ambient PM2.5 and O3 using outdoor concentrations, weather, home building characteristics, time-locations, and time-activities. We linked a mechanistic air exchange rate (AER) model, a mass-balance PM2.5 and O3 building infiltration model, and an inhaled ventilation model to determine outdoor concentrations (Tier 1), residential AER (Tier 2), infiltration factors (Tier 3), indoor concentrations (Tier 4), personal exposure factors (Tier 5), personal exposures (Tier 6), and inhaled doses (Tier 7). Using the application in central North Carolina, we demonstrated its ability to automatically obtain real-time input data from the nearest air monitors and weather stations, and predict the exposure metrics. A sensitivity analysis showed that the modeled exposure metrics can vary substantially with changes in seasonal indoor-outdoor temperature differences, daily home operating conditions (i.e., opening windows and operating air cleaners), and time spent outdoors. The capability of TracMyAir could help reduce uncertainty of ambient PM2.5 and O3 exposure metrics used in epidemiology studies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Aplicaciones Móviles/estadística & datos numéricos , Ozono/análisis , Material Particulado/análisis , Humanos , Modelos Teóricos , North Carolina , Teléfono Inteligente
3.
Int J Environ Pollut ; 65(123): 43-58, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534305

RESUMEN

Transportation infrastructure (including roadway traffic, ports, and airports) is critical to the nation's economy. With a growing economy, aircraft activity is expected to grow across the world. In the US, airport-related emissions, while generally small, are not an insignificant source of air pollution and related adverse health effects. However, currently there is a lack of tools that can easily be applied to study near-source pollution and explore the benefits of improvements to air quality and exposures. Screening-level air quality modelling is a useful tool for examining urban-scale air quality impacts of airport operations. Spatially-resolved aircraft emissions are needed for the screening-level modelling. In order to create spatially-resolved aircraft emissions, we developed a bottom-up emissions estimation methodology that includes data from a global chorded inventory dataset from the aviation environmental design tool (AEDT). The initial implementation of this method was performed for Los Angeles International Airport (LAX). This paper describes a new emissions estimation methodology for aircraft emissions in support of community-scale assessments of air quality around airports and presents an illustration of its application at the Los Angeles International Airport during the LAX 2011/2012 Air Quality Source Apportionment Study.

4.
Sci Total Environ ; 662: 347-360, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30690369

RESUMEN

Several harbors, like the Port of Leixões (Porto, Portugal), are located near urban and industrial areas, places where residential urban areas, highways and the refinery industry coexist. The need for assessing the contribution of the port to the air quality in its vicinity around the port is the motivation for the present study. This contribution was investigated using a numerical modelling approach based on the web-based research screening tool C-PORT. The impact of the meteorological conditions (namely atmospheric stability and wind direction) was first evaluated, and the most critical conditions for pollutants dispersion were identified. The dominant wind direction, from WSW, was responsible for the transport of pollutants over the surrounding urban area, which was potentiated by the diurnal sea breeze circulation. Multiple scenario runs were then performed to quantify the contribution of each emission sector/activity (namely maritime emissions; port activities; road traffic and refinery) to the ambient air quality. The multiple scenario runs indicated that land-based emission sources at the Port (including trucks, railways, cargo handling equipment and bulk material stored) were the major contributors (approximately 80%) for the levels of surface PM10 concentrations over the study area. Whereas, the main drivers of NOX concentrations were docked ships, responsible for 55-73% of the total NOX concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...